Collections: - Name: pspnet Metadata: Training Data: - Cityscapes - ADE20K - Pascal VOC 2012 + Aug - Pascal Context - Pascal Context 59 - Dark Zurich and Nighttime Driving - COCO-Stuff 10k - COCO-Stuff 164k - LoveDA Paper: URL: https://arxiv.org/abs/1612.01105 Title: Pyramid Scene Parsing Network README: configs/pspnet/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63 Version: v0.17.0 Converted From: Code: https://github.com/hszhao/PSPNet Models: - Name: pspnet_r50-d8_512x1024_40k_cityscapes In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 245.7 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 6.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.85 mIoU(ms+flip): 79.18 Config: configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth - Name: pspnet_r101-d8_512x1024_40k_cityscapes In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 373.13 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 9.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.34 mIoU(ms+flip): 79.74 Config: configs/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth - Name: pspnet_r50-d8_769x769_40k_cityscapes In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 568.18 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 6.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.26 mIoU(ms+flip): 79.88 Config: configs/pspnet/pspnet_r50-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725-86638686.pth - Name: pspnet_r101-d8_769x769_40k_cityscapes In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 869.57 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 10.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.08 mIoU(ms+flip): 80.28 Config: configs/pspnet/pspnet_r101-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753-61c6f5be.pth - Name: pspnet_r18-d8_512x1024_80k_cityscapes In Collection: pspnet Metadata: backbone: R-18-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 63.65 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 1.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 74.87 mIoU(ms+flip): 76.04 Config: configs/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes_20201225_021458-09ffa746.pth - Name: pspnet_r50-d8_512x1024_80k_cityscapes In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.55 mIoU(ms+flip): 79.79 Config: configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth - Name: pspnet_r101-d8_512x1024_80k_cityscapes In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.76 mIoU(ms+flip): 81.01 Config: configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth - Name: pspnet_r101-d8_fp16_512x1024_80k_cityscapes In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 114.03 hardware: V100 backend: PyTorch batch size: 1 mode: FP16 resolution: (512,1024) Training Memory (GB): 5.34 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.46 Config: configs/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919-a0875e5c.pth - Name: pspnet_r18-d8_769x769_80k_cityscapes In Collection: pspnet Metadata: backbone: R-18-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 161.29 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 1.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 75.9 mIoU(ms+flip): 77.86 Config: configs/pspnet/pspnet_r18-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes_20201225_021458-3deefc62.pth - Name: pspnet_r50-d8_769x769_80k_cityscapes In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.59 mIoU(ms+flip): 80.69 Config: configs/pspnet/pspnet_r50-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121-5ccf03dd.pth - Name: pspnet_r101-d8_769x769_80k_cityscapes In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.77 mIoU(ms+flip): 81.06 Config: configs/pspnet/pspnet_r101-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055-dba412fa.pth - Name: pspnet_r18b-d8_512x1024_80k_cityscapes In Collection: pspnet Metadata: backbone: R-18b-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 61.43 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 1.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 74.23 mIoU(ms+flip): 75.79 Config: configs/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes_20201226_063116-26928a60.pth - Name: pspnet_r50b-d8_512x1024_80k_cityscapes In Collection: pspnet Metadata: backbone: R-50b-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 232.56 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 6.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.22 mIoU(ms+flip): 79.46 Config: configs/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes_20201225_094315-6344287a.pth - Name: pspnet_r101b-d8_512x1024_80k_cityscapes In Collection: pspnet Metadata: backbone: R-101b-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 362.32 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 9.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.69 mIoU(ms+flip): 80.79 Config: configs/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth - Name: pspnet_r18b-d8_769x769_80k_cityscapes In Collection: pspnet Metadata: backbone: R-18b-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 156.01 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 1.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 74.92 mIoU(ms+flip): 76.9 Config: configs/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes_20201226_080942-bf98d186.pth - Name: pspnet_r50b-d8_769x769_80k_cityscapes In Collection: pspnet Metadata: backbone: R-50b-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 531.91 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 6.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.5 mIoU(ms+flip): 79.96 Config: configs/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes_20201225_094316-4c643cf6.pth - Name: pspnet_r101b-d8_769x769_80k_cityscapes In Collection: pspnet Metadata: backbone: R-101b-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 854.7 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 10.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.87 mIoU(ms+flip): 80.04 Config: configs/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes_20201226_171823-f0e7c293.pth - Name: pspnet_r50-d8_512x512_80k_ade20k In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 42.5 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 8.5 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.13 mIoU(ms+flip): 41.94 Config: configs/pspnet/pspnet_r50-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128-15a8b914.pth - Name: pspnet_r101-d8_512x512_80k_ade20k In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 65.36 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 12.0 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.57 mIoU(ms+flip): 44.35 Config: configs/pspnet/pspnet_r101-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423-b6e782f0.pth - Name: pspnet_r50-d8_512x512_160k_ade20k In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.48 mIoU(ms+flip): 43.44 Config: configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth - Name: pspnet_r101-d8_512x512_160k_ade20k In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 44.39 mIoU(ms+flip): 45.35 Config: configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth - Name: pspnet_r50-d8_512x512_20k_voc12aug In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 42.39 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 6.1 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.78 mIoU(ms+flip): 77.61 Config: configs/pspnet/pspnet_r50-d8_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958-ed5dfbd9.pth - Name: pspnet_r101-d8_512x512_20k_voc12aug In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 66.58 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.6 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 78.47 mIoU(ms+flip): 79.25 Config: configs/pspnet/pspnet_r101-d8_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003-4aef3c9a.pth - Name: pspnet_r50-d8_512x512_40k_voc12aug In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.29 mIoU(ms+flip): 78.48 Config: configs/pspnet/pspnet_r50-d8_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222-ae9c1b8c.pth - Name: pspnet_r101-d8_512x512_40k_voc12aug In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 78.52 mIoU(ms+flip): 79.57 Config: configs/pspnet/pspnet_r101-d8_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222-bc933b18.pth - Name: pspnet_r101-d8_480x480_40k_pascal_context In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (480,480) lr schd: 40000 inference time (ms/im): - value: 103.31 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (480,480) Training Memory (GB): 8.8 Results: - Task: Semantic Segmentation Dataset: Pascal Context Metrics: mIoU: 46.6 mIoU(ms+flip): 47.78 Config: configs/pspnet/pspnet_r101-d8_480x480_40k_pascal_context.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context_20200911_211210-bf0f5d7c.pth - Name: pspnet_r101-d8_480x480_80k_pascal_context In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (480,480) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Pascal Context Metrics: mIoU: 46.03 mIoU(ms+flip): 47.15 Config: configs/pspnet/pspnet_r101-d8_480x480_80k_pascal_context.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context_20200911_190530-c86d6233.pth - Name: pspnet_r101-d8_480x480_40k_pascal_context_59 In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (480,480) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal Context 59 Metrics: mIoU: 52.02 mIoU(ms+flip): 53.54 Config: configs/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59_20210416_114524-86d44cd4.pth - Name: pspnet_r101-d8_480x480_80k_pascal_context_59 In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (480,480) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Pascal Context 59 Metrics: mIoU: 52.47 mIoU(ms+flip): 53.99 Config: configs/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59_20210416_114418-fa6caaa2.pth - Name: pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 48.78 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.6 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 10k Metrics: mIoU: 35.69 mIoU(ms+flip): 36.62 Config: configs/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258-b88df27f.pth - Name: pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 90.09 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 13.2 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 10k Metrics: mIoU: 37.26 mIoU(ms+flip): 38.52 Config: configs/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135-76aae482.pth - Name: pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 10k Metrics: mIoU: 36.33 mIoU(ms+flip): 37.24 Config: configs/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857-92e2902b.pth - Name: pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 10k Metrics: mIoU: 37.76 mIoU(ms+flip): 38.86 Config: configs/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022-831aec95.pth - Name: pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 48.78 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.6 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 164k Metrics: mIoU: 38.8 mIoU(ms+flip): 39.19 Config: configs/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-0e41b2db.pth - Name: pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 90.09 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 13.2 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 164k Metrics: mIoU: 40.34 mIoU(ms+flip): 40.79 Config: configs/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-7eb41789.pth - Name: pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 164k Metrics: mIoU: 39.64 mIoU(ms+flip): 39.97 Config: configs/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-51276a57.pth - Name: pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 164k Metrics: mIoU: 41.28 mIoU(ms+flip): 41.66 Config: configs/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-4af9621b.pth - Name: pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 320000 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 164k Metrics: mIoU: 40.53 mIoU(ms+flip): 40.75 Config: configs/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-be9610cc.pth - Name: pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 320000 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 164k Metrics: mIoU: 41.95 mIoU(ms+flip): 42.42 Config: configs/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-72220c60.pth - Name: pspnet_r18-d8_512x512_80k_loveda In Collection: pspnet Metadata: backbone: R-18-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 37.22 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 1.45 Results: - Task: Semantic Segmentation Dataset: LoveDA Metrics: mIoU: 48.62 mIoU(ms+flip): 47.57 Config: configs/pspnet/pspnet_r18-d8_512x512_80k_loveda.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100-b97697f1.pth - Name: pspnet_r50-d8_512x512_80k_loveda In Collection: pspnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 151.52 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 6.14 Results: - Task: Semantic Segmentation Dataset: LoveDA Metrics: mIoU: 50.46 mIoU(ms+flip): 50.19 Config: configs/pspnet/pspnet_r50-d8_512x512_80k_loveda.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728-88610f9f.pth - Name: pspnet_r101-d8_512x512_80k_loveda In Collection: pspnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 218.34 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.61 Results: - Task: Semantic Segmentation Dataset: LoveDA Metrics: mIoU: 51.86 mIoU(ms+flip): 51.34 Config: configs/pspnet/pspnet_r101-d8_512x512_80k_loveda.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212-1c06c6a8.pth