Models: - Name: upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K In Collection: UperNet Metadata: backbone: Swin-T crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 47.48 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 5.02 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 44.41 mIoU(ms+flip): 45.79 Config: configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth - Name: upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K In Collection: UperNet Metadata: backbone: Swin-S crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 67.93 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 6.17 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 47.72 mIoU(ms+flip): 49.24 Config: configs/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth - Name: upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K In Collection: UperNet Metadata: backbone: Swin-B crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 79.05 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 7.61 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 47.99 mIoU(ms+flip): 49.57 Config: configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth - Name: upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K In Collection: UperNet Metadata: backbone: Swin-B crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 50.31 mIoU(ms+flip): 51.9 Config: configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth - Name: upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K In Collection: UperNet Metadata: backbone: Swin-B crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 82.64 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 8.52 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 48.35 mIoU(ms+flip): 49.65 Config: configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth - Name: upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K In Collection: UperNet Metadata: backbone: Swin-B crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 50.76 mIoU(ms+flip): 52.4 Config: configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth