# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import numpy as np import torch from mmengine.data import BaseDataElement, PixelData from mmseg.core import SegDataSample from mmseg.metrics import IoUMetric class TestIoUMetric(TestCase): def _demo_mm_inputs(self, batch_size=2, image_shapes=(3, 64, 64), num_classes=5): """Create a superset of inputs needed to run test or train batches. Args: batch_size (int): batch size. Default to 2. image_shapes (List[tuple], Optional): image shape. Default to (3, 64, 64) num_classes (int): number of different classes. Default to 5. """ if isinstance(image_shapes, list): assert len(image_shapes) == batch_size else: image_shapes = [image_shapes] * batch_size packed_inputs = [] for idx in range(batch_size): image_shape = image_shapes[idx] _, h, w = image_shape mm_inputs = dict() data_sample = SegDataSample() gt_semantic_seg = np.random.randint( 0, num_classes, (1, h, w), dtype=np.uint8) gt_semantic_seg = torch.LongTensor(gt_semantic_seg) gt_sem_seg_data = dict(data=gt_semantic_seg) data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data) mm_inputs['data_sample'] = data_sample.to_dict() packed_inputs.append(mm_inputs) return packed_inputs def _demo_mm_model_output(self, batch_size=2, image_shapes=(3, 64, 64), num_classes=5): """Create a superset of inputs needed to run test or train batches. Args: batch_size (int): batch size. Default to 2. image_shapes (List[tuple], Optional): image shape. Default to (3, 64, 64) num_classes (int): number of different classes. Default to 5. """ results_dict = dict() _, h, w = image_shapes seg_logit = torch.randn(batch_size, num_classes, h, w) results_dict['seg_logits'] = seg_logit seg_pred = np.random.randint( 0, num_classes, (batch_size, h, w), dtype=np.uint8) seg_pred = torch.LongTensor(seg_pred) results_dict['pred_sem_seg'] = seg_pred batch_datasampes = [ SegDataSample() for _ in range(results_dict['pred_sem_seg'].shape[0]) ] for key, value in results_dict.items(): for i in range(value.shape[0]): setattr(batch_datasampes[i], key, PixelData(data=value[i])) _predictions = [] for pred in batch_datasampes: if isinstance(pred, BaseDataElement): _predictions.append(pred.to_dict()) else: _predictions.append(pred) return _predictions def test_evaluate(self): """Test using the metric in the same way as Evalutor.""" data_batch = self._demo_mm_inputs() predictions = self._demo_mm_model_output() iou_metric = IoUMetric(metrics=['mIoU']) iou_metric.dataset_meta = dict( classes=['wall', 'building', 'sky', 'floor', 'tree'], label_map=dict(), reduce_zero_label=False) iou_metric.process(data_batch, predictions) res = iou_metric.evaluate(6) self.assertIsInstance(res, dict)