# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch import torch.distributed as dist from mmcv.runner import get_dist_info def check_dist_init(): return dist.is_available() and dist.is_initialized() def sync_random_seed(seed=None, device='cuda'): """Make sure different ranks share the same seed. All workers must call this function, otherwise it will deadlock. This method is generally used in `DistributedSampler`, because the seed should be identical across all processes in the distributed group. In distributed sampling, different ranks should sample non-overlapped data in the dataset. Therefore, this function is used to make sure that each rank shuffles the data indices in the same order based on the same seed. Then different ranks could use different indices to select non-overlapped data from the same data list. Args: seed (int, Optional): The seed. Default to None. device (str): The device where the seed will be put on. Default to 'cuda'. Returns: int: Seed to be used. """ if seed is None: seed = np.random.randint(2**31) assert isinstance(seed, int) rank, world_size = get_dist_info() if world_size == 1: return seed if rank == 0: random_num = torch.tensor(seed, dtype=torch.int32, device=device) else: random_num = torch.tensor(0, dtype=torch.int32, device=device) dist.broadcast(random_num, src=0) return random_num.item()