# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp import shutil import warnings from typing import Any, Iterable import mmcv import numpy as np import torch from mmcv.parallel import MMDataParallel from mmcv.runner import get_dist_info from mmcv.utils import DictAction from mmseg.apis import single_gpu_test from mmseg.datasets import build_dataloader, build_dataset from mmseg.models.segmentors.base import BaseSegmentor from mmseg.ops import resize class ONNXRuntimeSegmentor(BaseSegmentor): def __init__(self, onnx_file: str, cfg: Any, device_id: int): super(ONNXRuntimeSegmentor, self).__init__() import onnxruntime as ort # get the custom op path ort_custom_op_path = '' try: from mmcv.ops import get_onnxruntime_op_path ort_custom_op_path = get_onnxruntime_op_path() except (ImportError, ModuleNotFoundError): warnings.warn('If input model has custom op from mmcv, \ you may have to build mmcv with ONNXRuntime from source.') session_options = ort.SessionOptions() # register custom op for onnxruntime if osp.exists(ort_custom_op_path): session_options.register_custom_ops_library(ort_custom_op_path) sess = ort.InferenceSession(onnx_file, session_options) providers = ['CPUExecutionProvider'] options = [{}] is_cuda_available = ort.get_device() == 'GPU' if is_cuda_available: providers.insert(0, 'CUDAExecutionProvider') options.insert(0, {'device_id': device_id}) sess.set_providers(providers, options) self.sess = sess self.device_id = device_id self.io_binding = sess.io_binding() self.output_names = [_.name for _ in sess.get_outputs()] for name in self.output_names: self.io_binding.bind_output(name) self.cfg = cfg self.test_mode = cfg.model.test_cfg.mode self.is_cuda_available = is_cuda_available def extract_feat(self, imgs): raise NotImplementedError('This method is not implemented.') def encode_decode(self, img, img_metas): raise NotImplementedError('This method is not implemented.') def forward_train(self, imgs, img_metas, **kwargs): raise NotImplementedError('This method is not implemented.') def simple_test(self, img: torch.Tensor, img_meta: Iterable, **kwargs) -> list: if not self.is_cuda_available: img = img.detach().cpu() elif self.device_id >= 0: img = img.cuda(self.device_id) device_type = img.device.type self.io_binding.bind_input( name='input', device_type=device_type, device_id=self.device_id, element_type=np.float32, shape=img.shape, buffer_ptr=img.data_ptr()) self.sess.run_with_iobinding(self.io_binding) seg_pred = self.io_binding.copy_outputs_to_cpu()[0] # whole might support dynamic reshape ori_shape = img_meta[0]['ori_shape'] if not (ori_shape[0] == seg_pred.shape[-2] and ori_shape[1] == seg_pred.shape[-1]): seg_pred = torch.from_numpy(seg_pred).float() seg_pred = resize( seg_pred, size=tuple(ori_shape[:2]), mode='nearest') seg_pred = seg_pred.long().detach().cpu().numpy() seg_pred = seg_pred[0] seg_pred = list(seg_pred) return seg_pred def aug_test(self, imgs, img_metas, **kwargs): raise NotImplementedError('This method is not implemented.') class TensorRTSegmentor(BaseSegmentor): def __init__(self, trt_file: str, cfg: Any, device_id: int): super(TensorRTSegmentor, self).__init__() from mmcv.tensorrt import TRTWraper, load_tensorrt_plugin try: load_tensorrt_plugin() except (ImportError, ModuleNotFoundError): warnings.warn('If input model has custom op from mmcv, \ you may have to build mmcv with TensorRT from source.') model = TRTWraper( trt_file, input_names=['input'], output_names=['output']) self.model = model self.device_id = device_id self.cfg = cfg self.test_mode = cfg.model.test_cfg.mode def extract_feat(self, imgs): raise NotImplementedError('This method is not implemented.') def encode_decode(self, img, img_metas): raise NotImplementedError('This method is not implemented.') def forward_train(self, imgs, img_metas, **kwargs): raise NotImplementedError('This method is not implemented.') def simple_test(self, img: torch.Tensor, img_meta: Iterable, **kwargs) -> list: with torch.cuda.device(self.device_id), torch.no_grad(): seg_pred = self.model({'input': img})['output'] seg_pred = seg_pred.detach().cpu().numpy() # whole might support dynamic reshape ori_shape = img_meta[0]['ori_shape'] if not (ori_shape[0] == seg_pred.shape[-2] and ori_shape[1] == seg_pred.shape[-1]): seg_pred = torch.from_numpy(seg_pred).float() seg_pred = resize( seg_pred, size=tuple(ori_shape[:2]), mode='nearest') seg_pred = seg_pred.long().detach().cpu().numpy() seg_pred = seg_pred[0] seg_pred = list(seg_pred) return seg_pred def aug_test(self, imgs, img_metas, **kwargs): raise NotImplementedError('This method is not implemented.') def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser( description='mmseg backend test (and eval)') parser.add_argument('config', help='test config file path') parser.add_argument('model', help='Input model file') parser.add_argument( '--backend', help='Backend of the model.', choices=['onnxruntime', 'tensorrt']) parser.add_argument('--out', help='output result file in pickle format') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--eval', type=str, nargs='+', help='evaluation metrics, which depends on the dataset, e.g., "mIoU"' ' for generic datasets, and "cityscapes" for Cityscapes') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--show-dir', help='directory where painted images will be saved') parser.add_argument( '--options', nargs='+', action=DictAction, help="--options is deprecated in favor of --cfg_options' and it will " 'not be supported in version v0.22.0. Override some settings in the ' 'used config, the key-value pair in xxx=yyy format will be merged ' 'into config file. If the value to be overwritten is a list, it ' 'should be like key="[a,b]" or key=a,b It also allows nested ' 'list/tuple values, e.g. key="[(a,b),(c,d)]" Note that the quotation ' 'marks are necessary and that no white space is allowed.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--eval-options', nargs='+', action=DictAction, help='custom options for evaluation') parser.add_argument( '--opacity', type=float, default=0.5, help='Opacity of painted segmentation map. In (0, 1] range.') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) if args.options and args.cfg_options: raise ValueError( '--options and --cfg-options cannot be both ' 'specified, --options is deprecated in favor of --cfg-options. ' '--options will not be supported in version v0.22.0.') if args.options: warnings.warn('--options is deprecated in favor of --cfg-options. ' '--options will not be supported in version v0.22.0.') args.cfg_options = args.options return args def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show \ or args.show_dir, \ ('Please specify at least one operation (save/eval/format/show the ' 'results / save the results) with the argument "--out", "--eval"' ', "--format-only", "--show" or "--show-dir"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = mmcv.Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. distributed = False # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # load onnx config and meta cfg.model.train_cfg = None if args.backend == 'onnxruntime': model = ONNXRuntimeSegmentor(args.model, cfg=cfg, device_id=0) elif args.backend == 'tensorrt': model = TensorRTSegmentor(args.model, cfg=cfg, device_id=0) model.CLASSES = dataset.CLASSES model.PALETTE = dataset.PALETTE # clean gpu memory when starting a new evaluation. torch.cuda.empty_cache() eval_kwargs = {} if args.eval_options is None else args.eval_options # Deprecated efficient_test = eval_kwargs.get('efficient_test', False) if efficient_test: warnings.warn( '``efficient_test=True`` does not have effect in tools/test.py, ' 'the evaluation and format results are CPU memory efficient by ' 'default') eval_on_format_results = ( args.eval is not None and 'cityscapes' in args.eval) if eval_on_format_results: assert len(args.eval) == 1, 'eval on format results is not ' \ 'applicable for metrics other than ' \ 'cityscapes' if args.format_only or eval_on_format_results: if 'imgfile_prefix' in eval_kwargs: tmpdir = eval_kwargs['imgfile_prefix'] else: tmpdir = '.format_cityscapes' eval_kwargs.setdefault('imgfile_prefix', tmpdir) mmcv.mkdir_or_exist(tmpdir) else: tmpdir = None model = MMDataParallel(model, device_ids=[0]) results = single_gpu_test( model, data_loader, args.show, args.show_dir, False, args.opacity, pre_eval=args.eval is not None and not eval_on_format_results, format_only=args.format_only or eval_on_format_results, format_args=eval_kwargs) rank, _ = get_dist_info() if rank == 0: if args.out: warnings.warn( 'The behavior of ``args.out`` has been changed since MMSeg ' 'v0.16, the pickled outputs could be seg map as type of ' 'np.array, pre-eval results or file paths for ' '``dataset.format_results()``.') print(f'\nwriting results to {args.out}') mmcv.dump(results, args.out) if args.eval: dataset.evaluate(results, args.eval, **eval_kwargs) if tmpdir is not None and eval_on_format_results: # remove tmp dir when cityscapes evaluation shutil.rmtree(tmpdir) if __name__ == '__main__': main() # Following strings of text style are from colorama package bright_style, reset_style = '\x1b[1m', '\x1b[0m' red_text, blue_text = '\x1b[31m', '\x1b[34m' white_background = '\x1b[107m' msg = white_background + bright_style + red_text msg += 'DeprecationWarning: This tool will be deprecated in future. ' msg += blue_text + 'Welcome to use the unified model deployment toolbox ' msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy' msg += reset_style warnings.warn(msg)