# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from mmseg.models import SegDataPreProcessor # import torch # from mmengine.structures import PixelData # from mmseg.structures import SegDataSample class TestSegDataPreProcessor(TestCase): def test_init(self): # test mean is None processor = SegDataPreProcessor() self.assertTrue(not hasattr(processor, 'mean')) self.assertTrue(processor._enable_normalize is False) # test mean is not None processor = SegDataPreProcessor(mean=[0, 0, 0], std=[1, 1, 1]) self.assertTrue(hasattr(processor, 'mean')) self.assertTrue(hasattr(processor, 'std')) self.assertTrue(processor._enable_normalize) # please specify both mean and std with self.assertRaises(AssertionError): SegDataPreProcessor(mean=[0, 0, 0]) # bgr2rgb and rgb2bgr cannot be set to True at the same time with self.assertRaises(AssertionError): SegDataPreProcessor(bgr_to_rgb=True, rgb_to_bgr=True) # def test_forward(self): # data_sample = SegDataSample() # data_sample.gt_sem_seg = PixelData( # **{'data': torch.randint(0, 10, (1, 11, 10))}) # processor = SegDataPreProcessor( # mean=[0, 0, 0], std=[1, 1, 1], size=(20, 20)) # data = { # 'inputs': torch.randint(0, 256, (3, 11, 10)), # 'data_sample': data_sample # } # inputs, data_samples = processor([data, data], training=True) # self.assertEqual(inputs.shape, (2, 3, 20, 20)) # self.assertEqual(len(data_samples), 2)