# dataset settings dataset_type = 'STAREDataset' data_root = 'data/STARE' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) img_scale = (605, 700) crop_size = (128, 128) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='RandomResize', scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Pad', size=crop_size), dict(type='PackSegInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=img_scale, keep_ratio=True), dict(type='PackSegInputs') ] train_dataloader = dict( batch_size=4, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), type='RepeatDataset', times=40000, dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict( img_path='images/training', seg_map_path='annotations/training'), pipeline=train_pipeline)) val_dataloader = dict( batch_size=4, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict( img_path='images/validation', seg_map_path='annotations/validation'), pipeline=test_pipeline)) test_dataloader = val_dataloader