Models: - Name: convnext-tiny_upernet_8xb2-amp-160k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: ConvNeXt-T crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 50.25 hardware: V100 backend: PyTorch batch size: 1 mode: AMP resolution: (512,512) Training Memory (GB): 4.23 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 46.11 mIoU(ms+flip): 46.62 Config: configs/convnext/convnext-tiny_upernet_8xb2-amp-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth - Name: convnext-small_upernet_8xb2-amp-160k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: ConvNeXt-S crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 65.88 hardware: V100 backend: PyTorch batch size: 1 mode: AMP resolution: (512,512) Training Memory (GB): 5.16 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 48.56 mIoU(ms+flip): 49.02 Config: configs/convnext/convnext-small_upernet_8xb2-amp-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth - Name: convnext-base_upernet_8xb2-amp-160k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: ConvNeXt-B crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 69.4 hardware: V100 backend: PyTorch batch size: 1 mode: AMP resolution: (512,512) Training Memory (GB): 6.33 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 48.71 mIoU(ms+flip): 49.54 Config: configs/convnext/convnext-base_upernet_8xb2-amp-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth - Name: convnext-base_upernet_8xb2-amp-160k_ade20k-640x640 In Collection: UPerNet Metadata: backbone: ConvNeXt-B crop size: (640,640) lr schd: 160000 inference time (ms/im): - value: 91.91 hardware: V100 backend: PyTorch batch size: 1 mode: AMP resolution: (640,640) Training Memory (GB): 8.53 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 52.13 mIoU(ms+flip): 52.66 Config: configs/convnext/convnext-base_upernet_8xb2-amp-160k_ade20k-640x640.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k/upernet_convnext_base_fp16_640x640_160k_ade20k_20220227_182859-9280e39b.pth - Name: convnext-large_upernet_8xb2-amp-160k_ade20k-640x640 In Collection: UPerNet Metadata: backbone: ConvNeXt-L crop size: (640,640) lr schd: 160000 inference time (ms/im): - value: 130.04 hardware: V100 backend: PyTorch batch size: 1 mode: AMP resolution: (640,640) Training Memory (GB): 12.08 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 53.16 mIoU(ms+flip): 53.38 Config: configs/convnext/convnext-large_upernet_8xb2-amp-160k_ade20k-640x640.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth - Name: convnext-xlarge_upernet_8xb2-amp-160k_ade20k-640x640 In Collection: UPerNet Metadata: backbone: ConvNeXt-XL crop size: (640,640) lr schd: 160000 inference time (ms/im): - value: 157.98 hardware: V100 backend: PyTorch batch size: 1 mode: AMP resolution: (640,640) Training Memory (GB): 26.16 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 53.58 mIoU(ms+flip): 54.11 Config: configs/convnext/convnext-xlarge_upernet_8xb2-amp-160k_ade20k-640x640.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth