Collections: - Name: ResNeSt Metadata: Training Data: - Cityscapes - ADE20K Models: - Name: fcn_s101-d8_512x1024_80k_cityscapes In Collection: FCN Metadata: inference time (ms/im): - value: 418.41 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.56 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth Config: configs/fcn/fcn_s101-d8_512x1024_80k_cityscapes.py - Name: pspnet_s101-d8_512x1024_80k_cityscapes In Collection: PSPNet Metadata: inference time (ms/im): - value: 396.83 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.57 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth Config: configs/pspnet/pspnet_s101-d8_512x1024_80k_cityscapes.py - Name: deeplabv3_s101-d8_512x1024_80k_cityscapes In Collection: DeepLabV3 Metadata: inference time (ms/im): - value: 531.91 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.67 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth Config: configs/deeplabv3/deeplabv3_s101-d8_512x1024_80k_cityscapes.py - Name: deeplabv3plus_s101-d8_512x1024_80k_cityscapes In Collection: DeepLabV3+ Metadata: inference time (ms/im): - value: 423.73 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.62 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth Config: configs/deeplabv3+/deeplabv3plus_s101-d8_512x1024_80k_cityscapes.py - Name: fcn_s101-d8_512x512_160k_ade20k In Collection: FCN Metadata: inference time (ms/im): - value: 77.76 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.62 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth Config: configs/fcn/fcn_s101-d8_512x512_160k_ade20k.py - Name: pspnet_s101-d8_512x512_160k_ade20k In Collection: PSPNet Metadata: inference time (ms/im): - value: 76.8 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.44 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth Config: configs/pspnet/pspnet_s101-d8_512x512_160k_ade20k.py - Name: deeplabv3_s101-d8_512x512_160k_ade20k In Collection: DeepLabV3 Metadata: inference time (ms/im): - value: 107.76 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.71 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth Config: configs/deeplabv3/deeplabv3_s101-d8_512x512_160k_ade20k.py - Name: deeplabv3plus_s101-d8_512x512_160k_ade20k In Collection: DeepLabV3+ Metadata: inference time (ms/im): - value: 83.61 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 46.47 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth Config: configs/deeplabv3+/deeplabv3plus_s101-d8_512x512_160k_ade20k.py