# Copyright (c) OpenMMLab. All rights reserved. import torch from mmseg.models import MultiLevelNeck def test_multilevel_neck(): # Test init_weights MultiLevelNeck([266], 32).init_weights() # Test multi feature maps in_channels = [32, 64, 128, 256] inputs = [torch.randn(1, c, 14, 14) for i, c in enumerate(in_channels)] neck = MultiLevelNeck(in_channels, 32) outputs = neck(inputs) assert outputs[0].shape == torch.Size([1, 32, 7, 7]) assert outputs[1].shape == torch.Size([1, 32, 14, 14]) assert outputs[2].shape == torch.Size([1, 32, 28, 28]) assert outputs[3].shape == torch.Size([1, 32, 56, 56]) # Test one feature map in_channels = [768] inputs = [torch.randn(1, 768, 14, 14)] neck = MultiLevelNeck(in_channels, 32) outputs = neck(inputs) assert outputs[0].shape == torch.Size([1, 32, 7, 7]) assert outputs[1].shape == torch.Size([1, 32, 14, 14]) assert outputs[2].shape == torch.Size([1, 32, 28, 28]) assert outputs[3].shape == torch.Size([1, 32, 56, 56])