# dataset settings dataset_type = 'ImageNetSDataset' subset = 919 data_root = 'data/ImageNetS/ImageNetS919' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (224, 224) train_pipeline = [ dict(type='LoadImageNetSImageFromFile', downsample_large_image=True), dict(type='LoadImageNetSAnnotations', reduce_zero_label=False), dict(type='Resize', img_scale=(1024, 256), ratio_range=(0.5, 2.0)), dict( type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75, ignore_index=1000), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=1000), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageNetSImageFromFile', downsample_large_image=True), dict( type='MultiScaleFlipAug', img_scale=(1024, 256), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, subset=subset, data_root=data_root, img_dir='train-semi', ann_dir='train-semi-segmentation', pipeline=train_pipeline), val=dict( type=dataset_type, subset=subset, data_root=data_root, img_dir='validation', ann_dir='validation-segmentation', pipeline=test_pipeline), test=dict( type=dataset_type, subset=subset, data_root=data_root, img_dir='validation', ann_dir='validation-segmentation', pipeline=test_pipeline))