Collections: - Metadata: Training Data: - Cityscapes - ADE20k Name: resnest Models: - Config: configs/resnest/fcn_s101-d8_512x1024_80k_cityscapes.py In Collection: resnest Metadata: backbone: S-101-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 418.41 lr schd: 80000 memory (GB): 11.4 Name: fcn_s101-d8_512x1024_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 77.56 mIoU(ms+flip): 78.98 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth - Config: configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py In Collection: resnest Metadata: backbone: S-101-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 396.83 lr schd: 80000 memory (GB): 11.8 Name: pspnet_s101-d8_512x1024_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 78.57 mIoU(ms+flip): 79.19 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth - Config: configs/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes.py In Collection: resnest Metadata: backbone: S-101-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 531.91 lr schd: 80000 memory (GB): 11.9 Name: deeplabv3_s101-d8_512x1024_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 79.67 mIoU(ms+flip): 80.51 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth - Config: configs/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes.py In Collection: resnest Metadata: backbone: S-101-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 423.73 lr schd: 80000 memory (GB): 13.2 Name: deeplabv3plus_s101-d8_512x1024_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 79.62 mIoU(ms+flip): 80.27 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth - Config: configs/resnest/fcn_s101-d8_512x512_160k_ade20k.py In Collection: resnest Metadata: backbone: S-101-D8 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 77.76 lr schd: 160000 memory (GB): 14.2 Name: fcn_s101-d8_512x512_160k_ade20k Results: Dataset: ADE20k Metrics: mIoU: 45.62 mIoU(ms+flip): 46.16 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth - Config: configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py In Collection: resnest Metadata: backbone: S-101-D8 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 76.8 lr schd: 160000 memory (GB): 14.2 Name: pspnet_s101-d8_512x512_160k_ade20k Results: Dataset: ADE20k Metrics: mIoU: 45.44 mIoU(ms+flip): 46.28 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth - Config: configs/resnest/deeplabv3_s101-d8_512x512_160k_ade20k.py In Collection: resnest Metadata: backbone: S-101-D8 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 107.76 lr schd: 160000 memory (GB): 14.6 Name: deeplabv3_s101-d8_512x512_160k_ade20k Results: Dataset: ADE20k Metrics: mIoU: 45.71 mIoU(ms+flip): 46.59 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth - Config: configs/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k.py In Collection: resnest Metadata: backbone: S-101-D8 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 83.61 lr schd: 160000 memory (GB): 16.2 Name: deeplabv3plus_s101-d8_512x512_160k_ade20k Results: Dataset: ADE20k Metrics: mIoU: 46.47 mIoU(ms+flip): 47.27 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth