_base_ = './upernet_beit-base_8x2_640x640_160k_ade20k.py' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2560, 640), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='Resize', keep_ratio=True, min_size=640), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline), samples_per_gpu=2)