Collections: - Name: UPerNet License: Apache License 2.0 Metadata: Training Data: - Cityscapes - ADE20K - Pascal VOC 2012 + Aug Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf README: configs/upernet/README.md Frameworks: - PyTorch Models: - Name: upernet_r50_4xb2-40k_cityscapes-512x1024 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.1 mIoU(ms+flip): 78.37 Config: configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50 - UPerNet Training Resources: 4x V100 GPUS Memory (GB): 6.4 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827-aa54cb54.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r101_4xb2-40k_cityscapes-512x1024 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.69 mIoU(ms+flip): 80.11 Config: configs/upernet/upernet_r101_4xb2-40k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101 - UPerNet Training Resources: 4x V100 GPUS Memory (GB): 7.4 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933-ebce3b10.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r50_4xb2-40k_cityscapes-769x769 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.98 mIoU(ms+flip): 79.7 Config: configs/upernet/upernet_r50_4xb2-40k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50 - UPerNet Training Resources: 4x V100 GPUS Memory (GB): 7.2 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048-92d21539.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r101_4xb2-40k_cityscapes-769x769 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.03 mIoU(ms+flip): 80.77 Config: configs/upernet/upernet_r101_4xb2-40k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101 - UPerNet Training Resources: 4x V100 GPUS Memory (GB): 8.4 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r50_4xb2-80k_cityscapes-512x1024 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.19 mIoU(ms+flip): 79.19 Config: configs/upernet/upernet_r50_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50 - UPerNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207-848beca8.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r101_4xb2-80k_cityscapes-512x1024 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.4 mIoU(ms+flip): 80.46 Config: configs/upernet/upernet_r101_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101 - UPerNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403-f05f2345.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r50_4xb2-80k_cityscapes-769x769 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.39 mIoU(ms+flip): 80.92 Config: configs/upernet/upernet_r50_4xb2-80k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50 - UPerNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107-82ae7d15.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r101_4xb2-80k_cityscapes-769x769 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.1 mIoU(ms+flip): 81.49 Config: configs/upernet/upernet_r101_4xb2-80k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101 - UPerNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014-082fc334.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r50_4xb4-80k_ade20k-512x512 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 40.7 mIoU(ms+flip): 41.81 Config: configs/upernet/upernet_r50_4xb4-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50 - UPerNet Training Resources: 4x V100 GPUS Memory (GB): 8.1 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127-ecc8377b.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r101_4xb4-80k_ade20k-512x512 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.91 mIoU(ms+flip): 43.96 Config: configs/upernet/upernet_r101_4xb4-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-101 - UPerNet Training Resources: 4x V100 GPUS Memory (GB): 9.1 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r50_4xb4-160k_ade20k-512x512 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.05 mIoU(ms+flip): 42.78 Config: configs/upernet/upernet_r50_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50 - UPerNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328-8534de8d.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r101_4xb4-160k_ade20k-512x512 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.82 mIoU(ms+flip): 44.85 Config: configs/upernet/upernet_r101_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-101 - UPerNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r50_4xb4-20k_voc12aug-512x512 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 74.82 mIoU(ms+flip): 76.35 Config: configs/upernet/upernet_r50_4xb4-20k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - R-50 - UPerNet Training Resources: 4x V100 GPUS Memory (GB): 6.4 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330-5b5890a7.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r101_4xb4-20k_voc12aug-512x512 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.1 mIoU(ms+flip): 78.29 Config: configs/upernet/upernet_r101_4xb4-20k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - R-101 - UPerNet Training Resources: 4x V100 GPUS Memory (GB): 7.5 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r50_4xb4-40k_voc12aug-512x512 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 75.92 mIoU(ms+flip): 77.44 Config: configs/upernet/upernet_r50_4xb4-40k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - R-50 - UPerNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257-ca9bcc6b.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch - Name: upernet_r101_4xb4-40k_voc12aug-512x512 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.43 mIoU(ms+flip): 78.56 Config: configs/upernet/upernet_r101_4xb4-40k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - R-101 - UPerNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549-e26476ac.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549.log.json Paper: Title: Unified Perceptual Parsing for Scene Understanding URL: https://arxiv.org/pdf/1807.10221.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Framework: PyTorch