Collections: - Name: Segformer Metadata: Training Data: - ADE20K - Cityscapes Paper: URL: https://arxiv.org/abs/2105.15203 Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers' README: configs/segformer/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246 Version: v0.17.0 Converted From: Code: https://github.com/NVlabs/SegFormer Models: - Name: segformer_mit-b0_512x512_160k_ade20k In Collection: Segformer Metadata: backbone: MIT-B0 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 19.49 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 2.1 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 37.41 mIoU(ms+flip): 38.34 Config: configs/segformer/segformer_mit-b0_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530-8ffa8fda.pth - Name: segformer_mit-b1_512x512_160k_ade20k In Collection: Segformer Metadata: backbone: MIT-B1 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 20.98 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 2.6 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 40.97 mIoU(ms+flip): 42.54 Config: configs/segformer/segformer_mit-b1_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106-d70e859d.pth - Name: segformer_mit-b2_512x512_160k_ade20k In Collection: Segformer Metadata: backbone: MIT-B2 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 32.38 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 3.6 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.58 mIoU(ms+flip): 47.03 Config: configs/segformer/segformer_mit-b2_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103-cbd414ac.pth - Name: segformer_mit-b3_512x512_160k_ade20k In Collection: Segformer Metadata: backbone: MIT-B3 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 45.23 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 4.8 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 47.82 mIoU(ms+flip): 48.81 Config: configs/segformer/segformer_mit-b3_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410-962b98d2.pth - Name: segformer_mit-b4_512x512_160k_ade20k In Collection: Segformer Metadata: backbone: MIT-B4 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 64.72 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 6.1 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 48.46 mIoU(ms+flip): 49.76 Config: configs/segformer/segformer_mit-b4_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055-7f509d7d.pth - Name: segformer_mit-b5_512x512_160k_ade20k In Collection: Segformer Metadata: backbone: MIT-B5 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 84.1 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 7.2 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 49.13 mIoU(ms+flip): 50.22 Config: configs/segformer/segformer_mit-b5_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235-94cedf59.pth - Name: segformer_mit-b5_640x640_160k_ade20k In Collection: Segformer Metadata: backbone: MIT-B5 crop size: (640,640) lr schd: 160000 inference time (ms/im): - value: 88.5 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (640,640) Training Memory (GB): 11.5 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 49.62 mIoU(ms+flip): 50.36 Config: configs/segformer/segformer_mit-b5_640x640_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243-41d2845b.pth - Name: segformer_mit-b0_8x1_1024x1024_160k_cityscapes In Collection: Segformer Metadata: backbone: MIT-B0 crop size: (1024,1024) lr schd: 160000 inference time (ms/im): - value: 210.97 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (1024,1024) Training Memory (GB): 3.64 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.54 mIoU(ms+flip): 78.22 Config: configs/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857-e7f88502.pth - Name: segformer_mit-b1_8x1_1024x1024_160k_cityscapes In Collection: Segformer Metadata: backbone: MIT-B1 crop size: (1024,1024) lr schd: 160000 inference time (ms/im): - value: 232.56 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (1024,1024) Training Memory (GB): 4.49 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.56 mIoU(ms+flip): 79.73 Config: configs/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213-655c7b3f.pth - Name: segformer_mit-b2_8x1_1024x1024_160k_cityscapes In Collection: Segformer Metadata: backbone: MIT-B2 crop size: (1024,1024) lr schd: 160000 inference time (ms/im): - value: 297.62 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (1024,1024) Training Memory (GB): 7.42 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 81.08 mIoU(ms+flip): 82.18 Config: configs/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205-6096669a.pth - Name: segformer_mit-b3_8x1_1024x1024_160k_cityscapes In Collection: Segformer Metadata: backbone: MIT-B3 crop size: (1024,1024) lr schd: 160000 inference time (ms/im): - value: 395.26 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (1024,1024) Training Memory (GB): 10.86 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 81.94 mIoU(ms+flip): 83.14 Config: configs/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823-a8f8a177.pth - Name: segformer_mit-b4_8x1_1024x1024_160k_cityscapes In Collection: Segformer Metadata: backbone: MIT-B4 crop size: (1024,1024) lr schd: 160000 inference time (ms/im): - value: 531.91 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (1024,1024) Training Memory (GB): 15.07 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 81.89 mIoU(ms+flip): 83.38 Config: configs/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709-07f6c333.pth - Name: segformer_mit-b5_8x1_1024x1024_160k_cityscapes In Collection: Segformer Metadata: backbone: MIT-B5 crop size: (1024,1024) lr schd: 160000 inference time (ms/im): - value: 719.42 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (1024,1024) Training Memory (GB): 18.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 82.25 mIoU(ms+flip): 83.48 Config: configs/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934-87a052ec.pth