import pytest import torch def test_ce_loss(): from mmseg.models import build_loss # use_mask and use_sigmoid cannot be true at the same time with pytest.raises(AssertionError): loss_cfg = dict( type='CrossEntropyLoss', use_mask=True, use_sigmoid=True, loss_weight=1.0) build_loss(loss_cfg) # test loss with class weights loss_cls_cfg = dict( type='CrossEntropyLoss', use_sigmoid=False, class_weight=[0.8, 0.2], loss_weight=1.0) loss_cls = build_loss(loss_cls_cfg) fake_pred = torch.Tensor([[100, -100]]) fake_label = torch.Tensor([1]).long() assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(40.)) loss_cls_cfg = dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0) loss_cls = build_loss(loss_cls_cfg) assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(200.)) loss_cls_cfg = dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0) loss_cls = build_loss(loss_cls_cfg) assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(100.)) fake_pred = torch.full(size=(2, 21, 8, 8), fill_value=0.5) fake_label = torch.ones(2, 8, 8).long() assert torch.allclose( loss_cls(fake_pred, fake_label), torch.tensor(0.9503), atol=1e-4) fake_label[:, 0, 0] = 255 assert torch.allclose( loss_cls(fake_pred, fake_label, ignore_index=255), torch.tensor(0.9354), atol=1e-4) # TODO test use_mask