import torch from mmseg.models import MultiLevelNeck def test_multilevel_neck(): # Test multi feature maps in_channels = [256, 512, 1024, 2048] inputs = [torch.randn(1, c, 14, 14) for i, c in enumerate(in_channels)] neck = MultiLevelNeck(in_channels, 256) outputs = neck(inputs) assert outputs[0].shape == torch.Size([1, 256, 7, 7]) assert outputs[1].shape == torch.Size([1, 256, 14, 14]) assert outputs[2].shape == torch.Size([1, 256, 28, 28]) assert outputs[3].shape == torch.Size([1, 256, 56, 56]) # Test one feature map in_channels = [768] inputs = [torch.randn(1, 768, 14, 14)] neck = MultiLevelNeck(in_channels, 256) outputs = neck(inputs) assert outputs[0].shape == torch.Size([1, 256, 7, 7]) assert outputs[1].shape == torch.Size([1, 256, 14, 14]) assert outputs[2].shape == torch.Size([1, 256, 28, 28]) assert outputs[3].shape == torch.Size([1, 256, 56, 56])