Collections: - Name: cgnet Metadata: Training Data: - Cityscapes Models: - Name: cgnet_680x680_60k_cityscapes In Collection: cgnet Metadata: backbone: M3N21 crop size: (680,680) lr schd: 60000 inference time (ms/im): - value: 32.78 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (680,680) memory (GB): 7.5 Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 65.63 mIoU(ms+flip): 68.04 Config: configs/cgnet/cgnet_680x680_60k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/cgnet/cgnet_680x680_60k_cityscapes/cgnet_680x680_60k_cityscapes_20201101_110253-4c0b2f2d.pth - Name: cgnet_512x1024_60k_cityscapes In Collection: cgnet Metadata: backbone: M3N21 crop size: (512,1024) lr schd: 60000 inference time (ms/im): - value: 32.11 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) memory (GB): 8.3 Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 68.27 mIoU(ms+flip): 70.33 Config: configs/cgnet/cgnet_512x1024_60k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/cgnet/cgnet_512x1024_60k_cityscapes/cgnet_512x1024_60k_cityscapes_20201101_110254-124ea03b.pth