Models: - Name: fcn_m-v2-d8_512x1024_80k_cityscapes In Collection: FCN Metadata: inference time (ms/im): - value: 70.42 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 61.54 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x1024_80k_cityscapes/fcn_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-d24c28c1.pth Config: configs/fcn/fcn_m-v2-d8_512x1024_80k_cityscapes.py - Name: pspnet_m-v2-d8_512x1024_80k_cityscapes In Collection: PSPNet Metadata: inference time (ms/im): - value: 89.29 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 70.23 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth Config: configs/pspnet/pspnet_m-v2-d8_512x1024_80k_cityscapes.py - Name: deeplabv3_m-v2-d8_512x1024_80k_cityscapes In Collection: DeepLabV3 Metadata: inference time (ms/im): - value: 119.05 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 73.84 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth Config: configs/deeplabv3/deeplabv3_m-v2-d8_512x1024_80k_cityscapes.py - Name: deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes In Collection: DeepLabV3+ Metadata: inference time (ms/im): - value: 119.05 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 75.20 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth Config: configs/deeplabv3+/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes.py - Name: fcn_m-v2-d8_512x512_160k_ade20k In Collection: FCN Metadata: inference time (ms/im): - value: 15.53 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 19.71 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k_20200825_214953-c40e1095.pth Config: configs/fcn/fcn_m-v2-d8_512x512_160k_ade20k.py - Name: pspnet_m-v2-d8_512x512_160k_ade20k In Collection: PSPNet Metadata: inference time (ms/im): - value: 17.33 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 29.68 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k_20200825_214953-f5942f7a.pth Config: configs/pspnet/pspnet_m-v2-d8_512x512_160k_ade20k.py - Name: deeplabv3_m-v2-d8_512x512_160k_ade20k In Collection: DeepLabV3 Metadata: inference time (ms/im): - value: 25.06 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 34.08 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k_20200825_223255-63986343.pth Config: configs/deeplabv3/deeplabv3_m-v2-d8_512x512_160k_ade20k.py - Name: deeplabv3plus_m-v2-d8_512x512_160k_ade20k In Collection: DeepLabV3+ Metadata: inference time (ms/im): - value: 23.2 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 34.02 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k_20200825_223255-465a01d4.pth Config: configs/deeplabv3+/deeplabv3plus_m-v2-d8_512x512_160k_ade20k.py