Collections: - Name: EMANet Metadata: Training Data: - Cityscapes Paper: URL: https://arxiv.org/abs/1907.13426 Title: Expectation-Maximization Attention Networks for Semantic Segmentation README: configs/emanet/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80 Version: v0.17.0 Converted From: Code: https://xialipku.github.io/EMANet Models: - Name: emanet_r50-d8_512x1024_80k_cityscapes In Collection: EMANet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 218.34 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 5.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.59 mIoU(ms+flip): 79.44 Config: configs/emanet/emanet_r50-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth - Name: emanet_r101-d8_512x1024_80k_cityscapes In Collection: EMANet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 348.43 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 6.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.1 mIoU(ms+flip): 81.21 Config: configs/emanet/emanet_r101-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth - Name: emanet_r50-d8_769x769_80k_cityscapes In Collection: EMANet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 507.61 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 8.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.33 mIoU(ms+flip): 80.49 Config: configs/emanet/emanet_r50-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth - Name: emanet_r101-d8_769x769_80k_cityscapes In Collection: EMANet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 819.67 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 10.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.62 mIoU(ms+flip): 81.0 Config: configs/emanet/emanet_r101-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth