# Copyright (c) OpenMMLab. All rights reserved.
import random
import warnings

import mmcv
import numpy as np
import torch
import torch.distributed as dist
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import HOOKS, build_optimizer, build_runner, get_dist_info
from mmcv.utils import build_from_cfg

from mmseg import digit_version
from mmseg.core import DistEvalHook, EvalHook
from mmseg.datasets import build_dataloader, build_dataset
from mmseg.utils import find_latest_checkpoint, get_root_logger


def init_random_seed(seed=None, device='cuda'):
    """Initialize random seed.

    If the seed is not set, the seed will be automatically randomized,
    and then broadcast to all processes to prevent some potential bugs.
    Args:
        seed (int, Optional): The seed. Default to None.
        device (str): The device where the seed will be put on.
            Default to 'cuda'.
    Returns:
        int: Seed to be used.
    """
    if seed is not None:
        return seed

    # Make sure all ranks share the same random seed to prevent
    # some potential bugs. Please refer to
    # https://github.com/open-mmlab/mmdetection/issues/6339
    rank, world_size = get_dist_info()
    seed = np.random.randint(2**31)
    if world_size == 1:
        return seed

    if rank == 0:
        random_num = torch.tensor(seed, dtype=torch.int32, device=device)
    else:
        random_num = torch.tensor(0, dtype=torch.int32, device=device)
    dist.broadcast(random_num, src=0)
    return random_num.item()


def set_random_seed(seed, deterministic=False):
    """Set random seed.

    Args:
        seed (int): Seed to be used.
        deterministic (bool): Whether to set the deterministic option for
            CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
            to True and `torch.backends.cudnn.benchmark` to False.
            Default: False.
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    if deterministic:
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False


def train_segmentor(model,
                    dataset,
                    cfg,
                    distributed=False,
                    validate=False,
                    timestamp=None,
                    meta=None):
    """Launch segmentor training."""
    logger = get_root_logger(cfg.log_level)

    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
    data_loaders = [
        build_dataloader(
            ds,
            cfg.data.samples_per_gpu,
            cfg.data.workers_per_gpu,
            # cfg.gpus will be ignored if distributed
            len(cfg.gpu_ids),
            dist=distributed,
            seed=cfg.seed,
            drop_last=True) for ds in dataset
    ]

    # put model on gpus
    if distributed:
        find_unused_parameters = cfg.get('find_unused_parameters', False)
        # Sets the `find_unused_parameters` parameter in
        # torch.nn.parallel.DistributedDataParallel
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
            find_unused_parameters=find_unused_parameters)
    else:
        if not torch.cuda.is_available():
            assert digit_version(mmcv.__version__) >= digit_version('1.4.4'), \
                'Please use MMCV >= 1.4.4 for CPU training!'
        model = MMDataParallel(model, device_ids=cfg.gpu_ids)
    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)

    if cfg.get('runner') is None:
        cfg.runner = {'type': 'IterBasedRunner', 'max_iters': cfg.total_iters}
        warnings.warn(
            'config is now expected to have a `runner` section, '
            'please set `runner` in your config.', UserWarning)

    runner = build_runner(
        cfg.runner,
        default_args=dict(
            model=model,
            batch_processor=None,
            optimizer=optimizer,
            work_dir=cfg.work_dir,
            logger=logger,
            meta=meta))

    # register hooks
    runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config,
                                   cfg.get('momentum_config', None))

    # an ugly walkaround to make the .log and .log.json filenames the same
    runner.timestamp = timestamp

    # register eval hooks
    if validate:
        val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
        val_dataloader = build_dataloader(
            val_dataset,
            samples_per_gpu=1,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=distributed,
            shuffle=False)
        eval_cfg = cfg.get('evaluation', {})
        eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
        eval_hook = DistEvalHook if distributed else EvalHook
        # In this PR (https://github.com/open-mmlab/mmcv/pull/1193), the
        # priority of IterTimerHook has been modified from 'NORMAL' to 'LOW'.
        runner.register_hook(
            eval_hook(val_dataloader, **eval_cfg), priority='LOW')

    # user-defined hooks
    if cfg.get('custom_hooks', None):
        custom_hooks = cfg.custom_hooks
        assert isinstance(custom_hooks, list), \
            f'custom_hooks expect list type, but got {type(custom_hooks)}'
        for hook_cfg in cfg.custom_hooks:
            assert isinstance(hook_cfg, dict), \
                'Each item in custom_hooks expects dict type, but got ' \
                f'{type(hook_cfg)}'
            hook_cfg = hook_cfg.copy()
            priority = hook_cfg.pop('priority', 'NORMAL')
            hook = build_from_cfg(hook_cfg, HOOKS)
            runner.register_hook(hook, priority=priority)

    if cfg.resume_from is None and cfg.get('auto_resume'):
        resume_from = find_latest_checkpoint(cfg.work_dir)
        if resume_from is not None:
            cfg.resume_from = resume_from
    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow)