Collections: - Name: point_rend Metadata: Training Data: - Cityscapes - ADE20K Paper: URL: https://arxiv.org/abs/1912.08193 Title: 'PointRend: Image Segmentation as Rendering' README: configs/point_rend/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/point_head.py#L36 Version: v0.17.0 Converted From: Code: https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend Models: - Name: pointrend_r50_512x1024_80k_cityscapes In Collection: point_rend Metadata: backbone: R-50 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 117.92 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 3.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.47 mIoU(ms+flip): 78.13 Config: configs/point_rend/pointrend_r50_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes_20200711_015821-bb1ff523.pth - Name: pointrend_r101_512x1024_80k_cityscapes In Collection: point_rend Metadata: backbone: R-101 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 142.86 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 4.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.3 mIoU(ms+flip): 79.97 Config: configs/point_rend/pointrend_r101_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes_20200711_170850-d0ca84be.pth - Name: pointrend_r50_512x512_160k_ade20k In Collection: point_rend Metadata: backbone: R-50 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 57.77 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 5.1 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 37.64 mIoU(ms+flip): 39.17 Config: configs/point_rend/pointrend_r50_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k_20200807_232644-ac3febf2.pth - Name: pointrend_r101_512x512_160k_ade20k In Collection: point_rend Metadata: backbone: R-101 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 64.52 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 6.1 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 40.02 mIoU(ms+flip): 41.6 Config: configs/point_rend/pointrend_r101_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k_20200808_030852-8834902a.pth