Collections: - Metadata: Training Data: - Cityscapes - ADE20K Name: encnet Models: - Config: configs/encnet/encnet_r50-d8_512x1024_40k_cityscapes.py In Collection: encnet Metadata: backbone: R-50-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 218.34 lr schd: 40000 memory (GB): 8.6 Name: encnet_r50-d8_512x1024_40k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 75.67 mIoU(ms+flip): 77.08 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth - Config: configs/encnet/encnet_r101-d8_512x1024_40k_cityscapes.py In Collection: encnet Metadata: backbone: R-101-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 375.94 lr schd: 40000 memory (GB): 12.1 Name: encnet_r101-d8_512x1024_40k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 75.81 mIoU(ms+flip): 77.21 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth - Config: configs/encnet/encnet_r50-d8_769x769_40k_cityscapes.py In Collection: encnet Metadata: backbone: R-50-D8 crop size: (769,769) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (769,769) value: 549.45 lr schd: 40000 memory (GB): 9.8 Name: encnet_r50-d8_769x769_40k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 76.24 mIoU(ms+flip): 77.85 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth - Config: configs/encnet/encnet_r101-d8_769x769_40k_cityscapes.py In Collection: encnet Metadata: backbone: R-101-D8 crop size: (769,769) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (769,769) value: 793.65 lr schd: 40000 memory (GB): 13.7 Name: encnet_r101-d8_769x769_40k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 74.25 mIoU(ms+flip): 76.25 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth - Config: configs/encnet/encnet_r50-d8_512x1024_80k_cityscapes.py In Collection: encnet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 80000 Name: encnet_r50-d8_512x1024_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 77.94 mIoU(ms+flip): 79.13 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth - Config: configs/encnet/encnet_r101-d8_512x1024_80k_cityscapes.py In Collection: encnet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 Name: encnet_r101-d8_512x1024_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 78.55 mIoU(ms+flip): 79.47 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth - Config: configs/encnet/encnet_r50-d8_769x769_80k_cityscapes.py In Collection: encnet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 80000 Name: encnet_r50-d8_769x769_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 77.44 mIoU(ms+flip): 78.72 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth - Config: configs/encnet/encnet_r101-d8_769x769_80k_cityscapes.py In Collection: encnet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 80000 Name: encnet_r101-d8_769x769_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 76.1 mIoU(ms+flip): 76.97 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth - Config: configs/encnet/encnet_r50-d8_512x512_80k_ade20k.py In Collection: encnet Metadata: backbone: R-50-D8 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 43.84 lr schd: 80000 memory (GB): 10.1 Name: encnet_r50-d8_512x512_80k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 39.53 mIoU(ms+flip): 41.17 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth - Config: configs/encnet/encnet_r101-d8_512x512_80k_ade20k.py In Collection: encnet Metadata: backbone: R-101-D8 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 67.25 lr schd: 80000 memory (GB): 13.6 Name: encnet_r101-d8_512x512_80k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 42.11 mIoU(ms+flip): 43.61 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth - Config: configs/encnet/encnet_r50-d8_512x512_160k_ade20k.py In Collection: encnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 160000 Name: encnet_r50-d8_512x512_160k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 40.1 mIoU(ms+flip): 41.71 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth - Config: configs/encnet/encnet_r101-d8_512x512_160k_ade20k.py In Collection: encnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 160000 Name: encnet_r101-d8_512x512_160k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 42.61 mIoU(ms+flip): 44.01 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth