Collections: - Name: UNet Metadata: Training Data: - Cityscapes - DRIVE - STARE - CHASE_DB1 - HRF Paper: URL: https://arxiv.org/abs/1505.04597 Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation' README: configs/unet/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225 Version: v0.17.0 Converted From: Code: http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net Models: - Name: unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (512,1024) lr schd: 160000 inference time (ms/im): - value: 327.87 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 17.91 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 69.1 mIoU(ms+flip): 71.05 Config: configs/unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth - Name: unet-s5-d16_fcn_4xb4-40k_drive-64x64 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (64,64) lr schd: 40000 Training Memory (GB): 0.68 Results: - Task: Semantic Segmentation Dataset: DRIVE Metrics: Dice: 78.67 Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_drive-64x64.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth - Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (64,64) lr schd: 40000 Training Memory (GB): 0.582 Results: - Task: Semantic Segmentation Dataset: DRIVE Metrics: Dice: 79.32 Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820-785de5c2.pth - Name: unet-s5-d16_pspnet_4xb4-40k_drive-64x64 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (64,64) lr schd: 40000 Training Memory (GB): 0.599 Results: - Task: Semantic Segmentation Dataset: DRIVE Metrics: Dice: 78.62 Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_drive-64x64.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth - Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (64,64) lr schd: 40000 Training Memory (GB): 0.585 Results: - Task: Semantic Segmentation Dataset: DRIVE Metrics: Dice: 79.42 Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821-22b3e3ba.pth - Name: unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (64,64) lr schd: 40000 Training Memory (GB): 0.596 Results: - Task: Semantic Segmentation Dataset: DRIVE Metrics: Dice: 78.69 Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth - Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (64,64) lr schd: 40000 Training Memory (GB): 0.582 Results: - Task: Semantic Segmentation Dataset: DRIVE Metrics: Dice: 79.56 Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825-6bf0efd7.pth - Name: unet-s5-d16_fcn_4xb4-40k_stare-128x128 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 Training Memory (GB): 0.968 Results: - Task: Semantic Segmentation Dataset: STARE Metrics: Dice: 81.02 Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_stare-128x128.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth - Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 Training Memory (GB): 0.986 Results: - Task: Semantic Segmentation Dataset: STARE Metrics: Dice: 82.7 Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821-f75705a9.pth - Name: unet-s5-d16_pspnet_4xb4-40k_stare-128x128 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 Training Memory (GB): 0.982 Results: - Task: Semantic Segmentation Dataset: STARE Metrics: Dice: 81.22 Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_stare-128x128.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth - Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 Training Memory (GB): 1.028 Results: - Task: Semantic Segmentation Dataset: STARE Metrics: Dice: 82.84 Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823-f1063ef7.pth - Name: unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 Training Memory (GB): 0.999 Results: - Task: Semantic Segmentation Dataset: STARE Metrics: Dice: 80.93 Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth - Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 Training Memory (GB): 1.01 Results: - Task: Semantic Segmentation Dataset: STARE Metrics: Dice: 82.71 Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825-21db614c.pth - Name: unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 Training Memory (GB): 0.968 Results: - Task: Semantic Segmentation Dataset: CHASE_DB1 Metrics: Dice: 80.24 Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth - Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 Training Memory (GB): 0.986 Results: - Task: Semantic Segmentation Dataset: CHASE_DB1 Metrics: Dice: 80.4 Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821-1c4eb7cf.pth - Name: unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 Training Memory (GB): 0.982 Results: - Task: Semantic Segmentation Dataset: CHASE_DB1 Metrics: Dice: 80.36 Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth - Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 Training Memory (GB): 1.028 Results: - Task: Semantic Segmentation Dataset: CHASE_DB1 Metrics: Dice: 80.28 Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823-c0802c4d.pth - Name: unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 Training Memory (GB): 0.999 Results: - Task: Semantic Segmentation Dataset: CHASE_DB1 Metrics: Dice: 80.47 Config: configs/unet/unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth - Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 Training Memory (GB): 1.01 Results: - Task: Semantic Segmentation Dataset: CHASE_DB1 Metrics: Dice: 80.37 Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825-4ef29df5.pth - Name: unet-s5-d16_fcn_4xb4-40k_hrf-256x256 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (256,256) lr schd: 40000 Training Memory (GB): 2.525 Results: - Task: Semantic Segmentation Dataset: HRF Metrics: Dice: 79.45 Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth - Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (256,256) lr schd: 40000 Training Memory (GB): 2.623 Results: - Task: Semantic Segmentation Dataset: HRF Metrics: Dice: 80.87 Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821-c314da8a.pth - Name: unet-s5-d16_pspnet_4xb4-40k_hrf-256x256 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (256,256) lr schd: 40000 Training Memory (GB): 2.588 Results: - Task: Semantic Segmentation Dataset: HRF Metrics: Dice: 80.07 Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_hrf-256x256.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth - Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (256,256) lr schd: 40000 Training Memory (GB): 2.798 Results: - Task: Semantic Segmentation Dataset: HRF Metrics: Dice: 80.96 Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823-53d492fa.pth - Name: unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (256,256) lr schd: 40000 Training Memory (GB): 2.604 Results: - Task: Semantic Segmentation Dataset: HRF Metrics: Dice: 80.21 Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth - Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256 In Collection: UNet Metadata: backbone: UNet-S5-D16 crop size: (256,256) lr schd: 40000 Training Memory (GB): 2.607 Results: - Task: Semantic Segmentation Dataset: HRF Metrics: Dice: 80.71 Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032-59daf7a4.pth