# ISNet [ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation](https://arxiv.org/pdf/2108.12382.pdf) ## Description This is an implementation of [ISNet](https://arxiv.org/pdf/2108.12382.pdf). [Official Repo](https://github.com/SegmentationBLWX/sssegmentation) ## Usage ### Prerequisites - Python 3.7 - PyTorch 1.6 or higher - [MIM](https://github.com/open-mmlab/mim) v0.33 or higher - [MMSegmentation](https://github.com/open-mmlab/mmsegmentation) v1.0.0rc2 or higher All the commands below rely on the correct configuration of `PYTHONPATH`, which should point to the project's directory so that Python can locate the module files. In `isnet/` root directory, run the following line to add the current directory to `PYTHONPATH`: ```shell export PYTHONPATH=`pwd`:$PYTHONPATH ``` ### Training commands ```shell mim train mmsegmentation configs/isnet_r50-d8_8xb2-160k_cityscapes-512x1024.py --work-dir work_dirs/isnet ``` To train on multiple GPUs, e.g. 8 GPUs, run the following command: ```shell mim train mmsegmentation configs/isnet_r50-d8_8xb2-160k_cityscapes-512x1024.py --work-dir work_dirs/isnet --launcher pytorch --gpus 8 ``` ### Testing commands ```shell mim test mmsegmentation configs/isnet_r50-d8_8xb2-160k_cityscapes-512x1024.py --work-dir work_dirs/isnet --checkpoint ${CHECKPOINT_PATH} ``` | Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | | ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------ | | ISNet | R-50-D8 | 512x1024 | - | - | - | 79.32 | 80.88 | [config](configs/isnet_r50-d8_8xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isnet/isnet_r50-d8_cityscapes-512x1024_20230104-a7a8ccf2.pth) | ## Citation ```bibtex @article{Jin2021ISNetII, title={ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation}, author={Zhenchao Jin and B. Liu and Qi Chu and Nenghai Yu}, journal={2021 IEEE/CVF International Conference on Computer Vision (ICCV)}, year={2021}, pages={7169-7178} } ``` ## Checklist The progress of ISNet. - [x] Milestone 1: PR-ready, and acceptable to be one of the `projects/`. - [x] Finish the code - [x] Basic docstrings & proper citation - [x] Test-time correctness - [x] A full README - [ ] Milestone 2: Indicates a successful model implementation. - [ ] Training-time correctness - [ ] Milestone 3: Good to be a part of our core package! - [ ] Type hints and docstrings - [ ] Unit tests - [ ] Code polishing - [ ] Metafile.yml - [ ] Move your modules into the core package following the codebase's file hierarchy structure. - [ ] Refactor your modules into the core package following the codebase's file hierarchy structure.