## 使用预训练模型推理 我们提供测试脚本来评估完整数据集(Cityscapes, PASCAL VOC, ADE20k 等)上的结果,同时为了使其他项目的整合更容易,也提供一些高级 API。 ### 测试一个数据集 - 单卡 GPU - 单节点多卡 GPU - 多节点 您可以使用以下命令来测试一个数据集。 ```shell # 单卡 GPU 测试 python tools/test.py ${配置文件} ${检查点文件} [--out ${结果文件}] [--eval ${评估指标}] [--show] # 多卡GPU 测试 ./tools/dist_test.sh ${配置文件} ${检查点文件} ${GPU数目} [--out ${结果文件}] [--eval ${评估指标}] ``` 可选参数: - `RESULT_FILE`: pickle 格式的输出结果的文件名,如果不专门指定,结果将不会被专门保存成文件。(MMseg v0.17 之后,args.out 将只会保存评估时的中间结果或者是分割图的保存路径。) - `EVAL_METRICS`: 在结果里将被评估的指标。这主要取决于数据集, `mIoU` 对于所有数据集都可获得,像 Cityscapes 数据集可以通过 `cityscapes` 命令来专门评估,就像标准的 `mIoU`一样。 - `--show`: 如果被指定,分割结果将会在一张图像里画出来并且在另一个窗口展示。它仅仅是用来调试与可视化,并且仅针对单卡 GPU 测试。请确认 GUI 在您的环境里可用,否则您也许会遇到报错 `cannot connect to X server` - `--show-dir`: 如果被指定,分割结果将会在一张图像里画出来并且保存在指定文件夹里。它仅仅是用来调试与可视化,并且仅针对单卡GPU测试。使用该参数时,您的环境不需要 GUI。 - `--eval-options`: 评估时的可选参数,当设置 `efficient_test=True` 时,它将会保存中间结果至本地文件里以节约 CPU 内存。请确认您本地硬盘有足够的存储空间(大于20GB)。(MMseg v0.17 之后,`efficient_test` 不再生效,我们重构了 test api,通过使用一种渐近式的方式来提升评估和保存结果的效率。) 例子: 假设您已经下载检查点文件至文件夹 `checkpoints/` 里。 1. 测试 PSPNet 并可视化结果。按下任何键会进行到下一张图 ```shell python tools/test.py configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py \ checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth \ --show ``` 2. 测试 PSPNet 并保存画出的图以便于之后的可视化 ```shell python tools/test.py configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py \ checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth \ --show-dir psp_r50_512x1024_40ki_cityscapes_results ``` 3. 在数据集 PASCAL VOC (不保存测试结果) 上测试 PSPNet 并评估 mIoU ```shell python tools/test.py configs/pspnet/pspnet_r50-d8_512x1024_20k_voc12aug.py \ checkpoints/pspnet_r50-d8_512x1024_20k_voc12aug_20200605_003338-c57ef100.pth \ --eval mAP ``` 4. 使用4卡 GPU 测试 PSPNet,并且在标准 mIoU 和 cityscapes 指标里评估模型 ```shell ./tools/dist_test.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py \ checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth \ 4 --out results.pkl --eval mIoU cityscapes ``` 注意:在 cityscapes mIoU 和我们的 mIoU 指标会有一些差异 (~0.1%) 。因为 cityscapes 默认是根据类别样本数的多少进行加权平均,而我们对所有的数据集都是采取直接平均的方法来得到 mIoU。 5. 在 cityscapes 数据集上4卡 GPU 测试 PSPNet, 并生成 png 文件以便提交给官方评估服务器 首先,在配置文件里添加内容: `configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py`, ```python data = dict( test=dict( img_dir='leftImg8bit/test', ann_dir='gtFine/test')) ``` 随后,进行测试。 ```shell ./tools/dist_test.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py \ checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth \ 4 --format-only --eval-options "imgfile_prefix=./pspnet_test_results" ``` 您会在文件夹 `./pspnet_test_results` 里得到生成的 png 文件。 您也许可以运行 `zip -r results.zip pspnet_test_results/` 并提交 zip 文件给 [evaluation server](https://www.cityscapes-dataset.com/submit/)。 6. 在 Cityscapes 数据集上使用 CPU 高效内存选项来测试 DeeplabV3+ `mIoU` 指标 (没有保存测试结果) ```shell python tools/test.py \ configs/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes.py \ deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth \ --eval-options efficient_test=True \ --eval mIoU ``` 使用 ```pmap``` 可查看 CPU 内存情况, ```efficient_test=True``` 会使用约 2.25GB 的 CPU 内存, ```efficient_test=False``` 会使用约 11.06GB 的 CPU 内存。 这个可选参数可以节约很多 CPU 内存。(MMseg v0.17 之后, `efficient_test` 参数将不再生效, 我们使用了一种渐近的方式来更加有效快速地评估和保存结果。)