# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import shutil from unittest import TestCase import numpy as np import torch from mmengine.structures import PixelData from mmseg.evaluation import IoUMetric from mmseg.structures import SegDataSample class TestIoUMetric(TestCase): def _demo_mm_inputs(self, batch_size=2, image_shapes=(3, 64, 64), num_classes=5): """Create a superset of inputs needed to run test or train batches. Args: batch_size (int): batch size. Default to 2. image_shapes (List[tuple], Optional): image shape. Default to (3, 64, 64) num_classes (int): number of different classes. Default to 5. """ if isinstance(image_shapes, list): assert len(image_shapes) == batch_size else: image_shapes = [image_shapes] * batch_size data_samples = [] for idx in range(batch_size): image_shape = image_shapes[idx] _, h, w = image_shape data_sample = SegDataSample() gt_semantic_seg = np.random.randint( 0, num_classes, (1, h, w), dtype=np.uint8) gt_semantic_seg = torch.LongTensor(gt_semantic_seg) gt_sem_seg_data = dict(data=gt_semantic_seg) data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data) data_samples.append(data_sample.to_dict()) return data_samples def _demo_mm_model_output(self, data_samples, batch_size=2, image_shapes=(3, 64, 64), num_classes=5): _, h, w = image_shapes for data_sample in data_samples: data_sample['seg_logits'] = dict( data=torch.randn(num_classes, h, w)) data_sample['pred_sem_seg'] = dict( data=torch.randint(0, num_classes, (1, h, w))) data_sample[ 'img_path'] = 'tests/data/pseudo_dataset/imgs/00000_img.jpg' return data_samples def test_evaluate(self): """Test using the metric in the same way as Evalutor.""" data_samples = self._demo_mm_inputs() data_samples = self._demo_mm_model_output(data_samples) iou_metric = IoUMetric(iou_metrics=['mIoU']) iou_metric.dataset_meta = dict( classes=['wall', 'building', 'sky', 'floor', 'tree'], label_map=dict(), reduce_zero_label=False) iou_metric.process([0] * len(data_samples), data_samples) res = iou_metric.evaluate(2) self.assertIsInstance(res, dict) # test save segment file in output_dir iou_metric = IoUMetric(iou_metrics=['mIoU'], output_dir='tmp') iou_metric.dataset_meta = dict( classes=['wall', 'building', 'sky', 'floor', 'tree'], label_map=dict(), reduce_zero_label=False) iou_metric.process([0] * len(data_samples), data_samples) assert osp.exists('tmp') assert osp.isfile('tmp/00000_img.png') shutil.rmtree('tmp') # test format_only iou_metric = IoUMetric( iou_metrics=['mIoU'], output_dir='tmp', format_only=True) iou_metric.dataset_meta = dict( classes=['wall', 'building', 'sky', 'floor', 'tree'], label_map=dict(), reduce_zero_label=False) iou_metric.process([0] * len(data_samples), data_samples) assert iou_metric.results == [] assert osp.exists('tmp') assert osp.isfile('tmp/00000_img.png') shutil.rmtree('tmp')