Collections: - Name: APCNet Metadata: Training Data: - Cityscapes - ADE20K Paper: URL: https://openaccess.thecvf.com/content_CVPR_2019/html/He_Adaptive_Pyramid_Context_Network_for_Semantic_Segmentation_CVPR_2019_paper.html Title: Adaptive Pyramid Context Network for Semantic Segmentation README: configs/apcnet/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/apc_head.py#L111 Version: v0.17.0 Converted From: Code: https://github.com/Junjun2016/APCNet Models: - Name: apcnet_r50-d8_512x1024_40k_cityscapes In Collection: APCNet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 280.11 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 7.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.02 mIoU(ms+flip): 79.26 Config: configs/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth - Name: apcnet_r101-d8_512x1024_40k_cityscapes In Collection: APCNet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 465.12 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 11.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.08 mIoU(ms+flip): 80.34 Config: configs/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth - Name: apcnet_r50-d8_769x769_40k_cityscapes In Collection: APCNet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 657.89 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 8.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.89 mIoU(ms+flip): 79.75 Config: configs/apcnet/apcnet_r50-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth - Name: apcnet_r101-d8_769x769_40k_cityscapes In Collection: APCNet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 970.87 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 12.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.96 mIoU(ms+flip): 79.24 Config: configs/apcnet/apcnet_r101-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth - Name: apcnet_r50-d8_512x1024_80k_cityscapes In Collection: APCNet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.96 mIoU(ms+flip): 79.94 Config: configs/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth - Name: apcnet_r101-d8_512x1024_80k_cityscapes In Collection: APCNet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.64 mIoU(ms+flip): 80.61 Config: configs/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth - Name: apcnet_r50-d8_769x769_80k_cityscapes In Collection: APCNet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.79 mIoU(ms+flip): 80.35 Config: configs/apcnet/apcnet_r50-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth - Name: apcnet_r101-d8_769x769_80k_cityscapes In Collection: APCNet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.45 mIoU(ms+flip): 79.91 Config: configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth - Name: apcnet_r50-d8_512x512_80k_ade20k In Collection: APCNet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 50.99 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 10.1 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.2 mIoU(ms+flip): 43.3 Config: configs/apcnet/apcnet_r50-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth - Name: apcnet_r101-d8_512x512_80k_ade20k In Collection: APCNet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 76.34 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 13.6 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.54 mIoU(ms+flip): 46.65 Config: configs/apcnet/apcnet_r101-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth - Name: apcnet_r50-d8_512x512_160k_ade20k In Collection: APCNet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.4 mIoU(ms+flip): 43.94 Config: configs/apcnet/apcnet_r50-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth - Name: apcnet_r101-d8_512x512_160k_ade20k In Collection: APCNet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.41 mIoU(ms+flip): 46.63 Config: configs/apcnet/apcnet_r101-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth