Collections: - Name: DANet Metadata: Training Data: - Cityscapes - ADE20K - Pascal VOC 2012 + Aug Paper: URL: https://arxiv.org/abs/1809.02983 Title: Dual Attention Network for Scene Segmentation README: configs/danet/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76 Version: v0.17.0 Converted From: Code: https://github.com/junfu1115/DANet/ Models: - Name: danet_r50-d8_512x1024_40k_cityscapes In Collection: DANet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 375.94 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 7.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.74 Config: configs/danet/danet_r50-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_40k_cityscapes/danet_r50-d8_512x1024_40k_cityscapes_20200605_191324-c0dbfa5f.pth - Name: danet_r101-d8_512x1024_40k_cityscapes In Collection: DANet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 502.51 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 10.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.52 Config: configs/danet/danet_r101-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_40k_cityscapes/danet_r101-d8_512x1024_40k_cityscapes_20200605_200831-c57a7157.pth - Name: danet_r50-d8_769x769_40k_cityscapes In Collection: DANet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 641.03 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 8.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.88 mIoU(ms+flip): 80.62 Config: configs/danet/danet_r50-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_40k_cityscapes/danet_r50-d8_769x769_40k_cityscapes_20200530_025703-76681c60.pth - Name: danet_r101-d8_769x769_40k_cityscapes In Collection: DANet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 934.58 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 12.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.88 mIoU(ms+flip): 81.47 Config: configs/danet/danet_r101-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_40k_cityscapes/danet_r101-d8_769x769_40k_cityscapes_20200530_025717-dcb7fd4e.pth - Name: danet_r50-d8_512x1024_80k_cityscapes In Collection: DANet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.34 Config: configs/danet/danet_r50-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_80k_cityscapes/danet_r50-d8_512x1024_80k_cityscapes_20200607_133029-2bfa2293.pth - Name: danet_r101-d8_512x1024_80k_cityscapes In Collection: DANet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.41 Config: configs/danet/danet_r101-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_80k_cityscapes/danet_r101-d8_512x1024_80k_cityscapes_20200607_132918-955e6350.pth - Name: danet_r50-d8_769x769_80k_cityscapes In Collection: DANet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.27 mIoU(ms+flip): 80.96 Config: configs/danet/danet_r50-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_80k_cityscapes/danet_r50-d8_769x769_80k_cityscapes_20200607_132954-495689b4.pth - Name: danet_r101-d8_769x769_80k_cityscapes In Collection: DANet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.47 mIoU(ms+flip): 82.02 Config: configs/danet/danet_r101-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_80k_cityscapes/danet_r101-d8_769x769_80k_cityscapes_20200607_132918-f3a929e7.pth - Name: danet_r50-d8_512x512_80k_ade20k In Collection: DANet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 47.17 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 11.5 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.66 mIoU(ms+flip): 42.9 Config: configs/danet/danet_r50-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_80k_ade20k/danet_r50-d8_512x512_80k_ade20k_20200615_015125-edb18e08.pth - Name: danet_r101-d8_512x512_80k_ade20k In Collection: DANet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 70.52 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 15.0 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.64 mIoU(ms+flip): 45.19 Config: configs/danet/danet_r101-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_80k_ade20k/danet_r101-d8_512x512_80k_ade20k_20200615_015126-d0357c73.pth - Name: danet_r50-d8_512x512_160k_ade20k In Collection: DANet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.45 mIoU(ms+flip): 43.25 Config: configs/danet/danet_r50-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_160k_ade20k/danet_r50-d8_512x512_160k_ade20k_20200616_082340-9cb35dcd.pth - Name: danet_r101-d8_512x512_160k_ade20k In Collection: DANet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 44.17 mIoU(ms+flip): 45.02 Config: configs/danet/danet_r101-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_160k_ade20k/danet_r101-d8_512x512_160k_ade20k_20200616_082348-23bf12f9.pth - Name: danet_r50-d8_512x512_20k_voc12aug In Collection: DANet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 47.76 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 6.5 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 74.45 mIoU(ms+flip): 75.69 Config: configs/danet/danet_r50-d8_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_20k_voc12aug/danet_r50-d8_512x512_20k_voc12aug_20200618_070026-9e9e3ab3.pth - Name: danet_r101-d8_512x512_20k_voc12aug In Collection: DANet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 72.67 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.9 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.02 mIoU(ms+flip): 77.23 Config: configs/danet/danet_r101-d8_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_20k_voc12aug/danet_r101-d8_512x512_20k_voc12aug_20200618_070026-d48d23b2.pth - Name: danet_r50-d8_512x512_40k_voc12aug In Collection: DANet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.37 mIoU(ms+flip): 77.29 Config: configs/danet/danet_r50-d8_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_40k_voc12aug/danet_r50-d8_512x512_40k_voc12aug_20200613_235526-426e3a64.pth - Name: danet_r101-d8_512x512_40k_voc12aug In Collection: DANet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.51 mIoU(ms+flip): 77.32 Config: configs/danet/danet_r101-d8_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_40k_voc12aug/danet_r101-d8_512x512_40k_voc12aug_20200613_223031-788e232a.pth