Collections: - Name: FastFCN Metadata: Training Data: - Cityscapes - ADE20K Paper: URL: https://arxiv.org/abs/1903.11816 Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' README: configs/fastfcn/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 Version: v0.18.0 Converted From: Code: https://github.com/wuhuikai/FastFCN Models: - Name: fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes In Collection: FastFCN Metadata: backbone: R-50-D32 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 378.79 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 5.67 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.12 mIoU(ms+flip): 80.58 Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722-5d1a2648.pth - Name: fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes In Collection: FastFCN Metadata: backbone: R-50-D32 crop size: (512,1024) lr schd: 80000 Training Memory (GB): 9.79 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.52 mIoU(ms+flip): 80.91 Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357-72220849.pth - Name: fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes In Collection: FastFCN Metadata: backbone: R-50-D32 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 227.27 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 5.67 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.26 mIoU(ms+flip): 80.86 Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722-57749bed.pth - Name: fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes In Collection: FastFCN Metadata: backbone: R-50-D32 crop size: (512,1024) lr schd: 80000 Training Memory (GB): 9.94 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.76 mIoU(ms+flip): 80.03 Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841-77e87b0a.pth - Name: fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes In Collection: FastFCN Metadata: backbone: R-50-D32 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 209.64 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 8.15 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.97 mIoU(ms+flip): 79.92 Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036-78da5046.pth - Name: fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes In Collection: FastFCN Metadata: backbone: R-50-D32 crop size: (512,1024) lr schd: 80000 Training Memory (GB): 15.45 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.6 mIoU(ms+flip): 80.25 Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217-e1eb6dbb.pth - Name: fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k In Collection: FastFCN Metadata: backbone: R-50-D32 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 82.92 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 8.46 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.88 mIoU(ms+flip): 42.91 Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619-3aa40f2d.pth - Name: fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k In Collection: FastFCN Metadata: backbone: R-50-D32 crop size: (512,1024) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.58 mIoU(ms+flip): 44.92 Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246-27036aee.pth - Name: fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k In Collection: FastFCN Metadata: backbone: R-50-D32 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 52.06 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 8.02 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.4 mIoU(ms+flip): 42.12 Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137-993d07c8.pth - Name: fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k In Collection: FastFCN Metadata: backbone: R-50-D32 crop size: (512,1024) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.63 mIoU(ms+flip): 43.71 Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455-e8f5a2fd.pth - Name: fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k In Collection: FastFCN Metadata: backbone: R-50-D32 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 58.04 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 9.67 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 40.88 mIoU(ms+flip): 42.36 Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214-65aef6dd.pth - Name: fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k In Collection: FastFCN Metadata: backbone: R-50-D32 crop size: (512,1024) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.5 mIoU(ms+flip): 44.21 Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456-d875ce3c.pth