Collections: - Name: ICNet Metadata: Training Data: - Cityscapes Paper: URL: https://arxiv.org/abs/1704.08545 Title: ICNet for Real-time Semantic Segmentation on High-resolution Images README: configs/icnet/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 Version: v0.18.0 Converted From: Code: https://github.com/hszhao/ICNet Models: - Name: icnet_r18-d8_832x832_80k_cityscapes In Collection: ICNet Metadata: backbone: R-18-D8 crop size: (832,832) lr schd: 80000 inference time (ms/im): - value: 36.87 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (832,832) Training Memory (GB): 1.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 68.14 mIoU(ms+flip): 70.16 Config: configs/icnet/icnet_r18-d8_832x832_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521-2e36638d.pth - Name: icnet_r18-d8_832x832_160k_cityscapes In Collection: ICNet Metadata: backbone: R-18-D8 crop size: (832,832) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 71.64 mIoU(ms+flip): 74.18 Config: configs/icnet/icnet_r18-d8_832x832_160k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153-2c6eb6e0.pth - Name: icnet_r18-d8_in1k-pre_832x832_80k_cityscapes In Collection: ICNet Metadata: backbone: R-18-D8 crop size: (832,832) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 72.51 mIoU(ms+flip): 74.78 Config: configs/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354-1cbe3022.pth - Name: icnet_r18-d8_in1k-pre_832x832_160k_cityscapes In Collection: ICNet Metadata: backbone: R-18-D8 crop size: (832,832) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 74.43 mIoU(ms+flip): 76.72 Config: configs/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702-619c8ae1.pth - Name: icnet_r50-d8_832x832_80k_cityscapes In Collection: ICNet Metadata: backbone: R-50-D8 crop size: (832,832) lr schd: 80000 inference time (ms/im): - value: 49.8 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (832,832) Training Memory (GB): 2.53 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 68.91 mIoU(ms+flip): 69.72 Config: configs/icnet/icnet_r50-d8_832x832_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625-c6407341.pth - Name: icnet_r50-d8_832x832_160k_cityscapes In Collection: ICNet Metadata: backbone: R-50-D8 crop size: (832,832) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 73.82 mIoU(ms+flip): 75.67 Config: configs/icnet/icnet_r50-d8_832x832_160k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612-a95f0d4e.pth - Name: icnet_r50-d8_in1k-pre_832x832_80k_cityscapes In Collection: ICNet Metadata: backbone: R-50-D8 crop size: (832,832) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 74.58 mIoU(ms+flip): 76.41 Config: configs/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943-1743dc7b.pth - Name: icnet_r50-d8_in1k-pre_832x832_160k_cityscapes In Collection: ICNet Metadata: backbone: R-50-D8 crop size: (832,832) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.29 mIoU(ms+flip): 78.09 Config: configs/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715-ce310aea.pth - Name: icnet_r101-d8_832x832_80k_cityscapes In Collection: ICNet Metadata: backbone: R-101-D8 crop size: (832,832) lr schd: 80000 inference time (ms/im): - value: 59.0 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (832,832) Training Memory (GB): 3.08 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 70.28 mIoU(ms+flip): 71.95 Config: configs/icnet/icnet_r101-d8_832x832_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447-b52f936e.pth - Name: icnet_r101-d8_832x832_160k_cityscapes In Collection: ICNet Metadata: backbone: R-101-D8 crop size: (832,832) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 73.8 mIoU(ms+flip): 76.1 Config: configs/icnet/icnet_r101-d8_832x832_160k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350-3a1ebf1a.pth - Name: icnet_r101-d8_in1k-pre_832x832_80k_cityscapes In Collection: ICNet Metadata: backbone: R-101-D8 crop size: (832,832) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 75.57 mIoU(ms+flip): 77.86 Config: configs/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414-7ceb12c5.pth - Name: icnet_r101-d8_in1k-pre_832x832_160k_cityscapes In Collection: ICNet Metadata: backbone: R-101-D8 crop size: (832,832) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.15 mIoU(ms+flip): 77.98 Config: configs/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612-9484ae8a.pth