# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmseg.models.decode_heads import PSPHead from .utils import _conv_has_norm, to_cuda def test_psp_head(): with pytest.raises(AssertionError): # pool_scales must be list|tuple PSPHead(in_channels=4, channels=2, num_classes=19, pool_scales=1) # test no norm_cfg head = PSPHead(in_channels=4, channels=2, num_classes=19) assert not _conv_has_norm(head, sync_bn=False) # test with norm_cfg head = PSPHead( in_channels=4, channels=2, num_classes=19, norm_cfg=dict(type='SyncBN')) assert _conv_has_norm(head, sync_bn=True) inputs = [torch.randn(1, 4, 23, 23)] head = PSPHead( in_channels=4, channels=2, num_classes=19, pool_scales=(1, 2, 3)) if torch.cuda.is_available(): head, inputs = to_cuda(head, inputs) assert head.psp_modules[0][0].output_size == 1 assert head.psp_modules[1][0].output_size == 2 assert head.psp_modules[2][0].output_size == 3 outputs = head(inputs) assert outputs.shape == (1, head.num_classes, 23, 23)