import torch from mmseg.models.decode_heads import DAHead from .utils import to_cuda def test_da_head(): inputs = [torch.randn(1, 32, 45, 45)] head = DAHead(in_channels=32, channels=16, num_classes=19, pam_channels=8) if torch.cuda.is_available(): head, inputs = to_cuda(head, inputs) outputs = head(inputs) assert isinstance(outputs, tuple) and len(outputs) == 3 for output in outputs: assert output.shape == (1, head.num_classes, 45, 45) test_output = head.forward_test(inputs, None, None) assert test_output.shape == (1, head.num_classes, 45, 45)