Collections: - Metadata: Training Data: - Cityscapes - ' HRNet backbone' - ' ResNet backbone' - ADE20K - Pascal VOC 2012 + Aug Name: ocrnet Models: - Config: configs/ocrnet/ocrnet_hr18s_512x1024_40k_cityscapes.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18-Small crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 95.69 lr schd: 40000 memory (GB): 3.5 Name: ocrnet_hr18s_512x1024_40k_cityscapes Results: Dataset: ' HRNet backbone' Metrics: mIoU: 74.3 mIoU(ms+flip): 75.95 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_40k_cityscapes/ocrnet_hr18s_512x1024_40k_cityscapes_20200601_033304-fa2436c2.pth - Config: configs/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 133.33 lr schd: 40000 memory (GB): 4.7 Name: ocrnet_hr18_512x1024_40k_cityscapes Results: Dataset: ' HRNet backbone' Metrics: mIoU: 77.72 mIoU(ms+flip): 79.49 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth - Config: configs/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W48 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 236.97 lr schd: 40000 memory (GB): 8.0 Name: ocrnet_hr48_512x1024_40k_cityscapes Results: Dataset: ' HRNet backbone' Metrics: mIoU: 80.58 mIoU(ms+flip): 81.79 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth - Config: configs/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18-Small crop size: (512,1024) lr schd: 80000 Name: ocrnet_hr18s_512x1024_80k_cityscapes Results: Dataset: ' HRNet backbone' Metrics: mIoU: 77.16 mIoU(ms+flip): 78.66 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth - Config: configs/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18 crop size: (512,1024) lr schd: 80000 Name: ocrnet_hr18_512x1024_80k_cityscapes Results: Dataset: ' HRNet backbone' Metrics: mIoU: 78.57 mIoU(ms+flip): 80.46 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth - Config: configs/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W48 crop size: (512,1024) lr schd: 80000 Name: ocrnet_hr48_512x1024_80k_cityscapes Results: Dataset: ' HRNet backbone' Metrics: mIoU: 80.7 mIoU(ms+flip): 81.87 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth - Config: configs/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18-Small crop size: (512,1024) lr schd: 160000 Name: ocrnet_hr18s_512x1024_160k_cityscapes Results: Dataset: ' HRNet backbone' Metrics: mIoU: 78.45 mIoU(ms+flip): 79.97 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth - Config: configs/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18 crop size: (512,1024) lr schd: 160000 Name: ocrnet_hr18_512x1024_160k_cityscapes Results: Dataset: ' HRNet backbone' Metrics: mIoU: 79.47 mIoU(ms+flip): 80.91 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth - Config: configs/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W48 crop size: (512,1024) lr schd: 160000 Name: ocrnet_hr48_512x1024_160k_cityscapes Results: Dataset: ' HRNet backbone' Metrics: mIoU: 81.35 mIoU(ms+flip): 82.7 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth - Config: configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes.py In Collection: ocrnet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 40000 Name: ocrnet_r101-d8_512x1024_40k_b8_cityscapes Results: Dataset: ' ResNet backbone' Metrics: mIoU: 80.09 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes-02ac0f13.pth - Config: configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes.py In Collection: ocrnet Metadata: backbone: R-101-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 331.13 lr schd: 40000 memory (GB): 8.8 Name: ocrnet_r101-d8_512x1024_40k_b16_cityscapes Results: Dataset: ' ResNet backbone' Metrics: mIoU: 80.3 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes-db500f80.pth - Config: configs/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes.py In Collection: ocrnet Metadata: backbone: R-101-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 331.13 lr schd: 80000 memory (GB): 8.8 Name: ocrnet_r101-d8_512x1024_80k_b16_cityscapes Results: Dataset: ' ResNet backbone' Metrics: mIoU: 80.81 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes-78688424.pth - Config: configs/ocrnet/ocrnet_hr18s_512x512_80k_ade20k.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18-Small crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 34.51 lr schd: 80000 memory (GB): 6.7 Name: ocrnet_hr18s_512x512_80k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 35.06 mIoU(ms+flip): 35.8 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600-e80b62af.pth - Config: configs/ocrnet/ocrnet_hr18_512x512_80k_ade20k.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 52.83 lr schd: 80000 memory (GB): 7.9 Name: ocrnet_hr18_512x512_80k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 37.79 mIoU(ms+flip): 39.16 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157-d173d83b.pth - Config: configs/ocrnet/ocrnet_hr48_512x512_80k_ade20k.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W48 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 58.86 lr schd: 80000 memory (GB): 11.2 Name: ocrnet_hr48_512x512_80k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 43.0 mIoU(ms+flip): 44.3 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518-d168c2d1.pth - Config: configs/ocrnet/ocrnet_hr18s_512x512_160k_ade20k.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18-Small crop size: (512,512) lr schd: 160000 Name: ocrnet_hr18s_512x512_160k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 37.19 mIoU(ms+flip): 38.4 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505-8e913058.pth - Config: configs/ocrnet/ocrnet_hr18_512x512_160k_ade20k.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18 crop size: (512,512) lr schd: 160000 Name: ocrnet_hr18_512x512_160k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 39.32 mIoU(ms+flip): 40.8 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940-d8fcd9d1.pth - Config: configs/ocrnet/ocrnet_hr48_512x512_160k_ade20k.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W48 crop size: (512,512) lr schd: 160000 Name: ocrnet_hr48_512x512_160k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 43.25 mIoU(ms+flip): 44.88 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705-a073726d.pth - Config: configs/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18-Small crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 31.7 lr schd: 20000 memory (GB): 3.5 Name: ocrnet_hr18s_512x512_20k_voc12aug Results: Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 71.7 mIoU(ms+flip): 73.84 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913-02b04fcb.pth - Config: configs/ocrnet/ocrnet_hr18_512x512_20k_voc12aug.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 50.23 lr schd: 20000 memory (GB): 4.7 Name: ocrnet_hr18_512x512_20k_voc12aug Results: Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 74.75 mIoU(ms+flip): 77.11 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932-8954cbb7.pth - Config: configs/ocrnet/ocrnet_hr48_512x512_20k_voc12aug.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W48 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 56.09 lr schd: 20000 memory (GB): 8.1 Name: ocrnet_hr48_512x512_20k_voc12aug Results: Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.72 mIoU(ms+flip): 79.87 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932-9e82080a.pth - Config: configs/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18-Small crop size: (512,512) lr schd: 40000 Name: ocrnet_hr18s_512x512_40k_voc12aug Results: Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 72.76 mIoU(ms+flip): 74.6 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025-42b587ac.pth - Config: configs/ocrnet/ocrnet_hr18_512x512_40k_voc12aug.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W18 crop size: (512,512) lr schd: 40000 Name: ocrnet_hr18_512x512_40k_voc12aug Results: Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 74.98 mIoU(ms+flip): 77.4 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958-714302be.pth - Config: configs/ocrnet/ocrnet_hr48_512x512_40k_voc12aug.py In Collection: ocrnet Metadata: backbone: HRNetV2p-W48 crop size: (512,512) lr schd: 40000 Name: ocrnet_hr48_512x512_40k_voc12aug Results: Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.14 mIoU(ms+flip): 79.71 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958-255bc5ce.pth