Collections: - Metadata: Training Data: - Cityscapes - ADE20K - Pascal VOC 2012 + Aug Name: psanet Models: - Config: configs/psanet/psanet_r50-d8_512x1024_40k_cityscapes.py In Collection: psanet Metadata: backbone: R-50-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 315.46 lr schd: 40000 memory (GB): 7.0 Name: psanet_r50-d8_512x1024_40k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 77.63 mIoU(ms+flip): 79.04 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117-99fac37c.pth - Config: configs/psanet/psanet_r101-d8_512x1024_40k_cityscapes.py In Collection: psanet Metadata: backbone: R-101-D8 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 454.55 lr schd: 40000 memory (GB): 10.5 Name: psanet_r101-d8_512x1024_40k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 79.14 mIoU(ms+flip): 80.19 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418-27b9cfa7.pth - Config: configs/psanet/psanet_r50-d8_769x769_40k_cityscapes.py In Collection: psanet Metadata: backbone: R-50-D8 crop size: (769,769) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (769,769) value: 714.29 lr schd: 40000 memory (GB): 7.9 Name: psanet_r50-d8_769x769_40k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 77.99 mIoU(ms+flip): 79.64 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717-d5365506.pth - Config: configs/psanet/psanet_r101-d8_769x769_40k_cityscapes.py In Collection: psanet Metadata: backbone: R-101-D8 crop size: (769,769) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (769,769) value: 1020.41 lr schd: 40000 memory (GB): 11.9 Name: psanet_r101-d8_769x769_40k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 78.43 mIoU(ms+flip): 80.26 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107-997da1e6.pth - Config: configs/psanet/psanet_r50-d8_512x1024_80k_cityscapes.py In Collection: psanet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 80000 Name: psanet_r50-d8_512x1024_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 77.24 mIoU(ms+flip): 78.69 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842-ab60a24f.pth - Config: configs/psanet/psanet_r101-d8_512x1024_80k_cityscapes.py In Collection: psanet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 Name: psanet_r101-d8_512x1024_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 79.31 mIoU(ms+flip): 80.53 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823-0f73a169.pth - Config: configs/psanet/psanet_r50-d8_769x769_80k_cityscapes.py In Collection: psanet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 80000 Name: psanet_r50-d8_769x769_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 79.31 mIoU(ms+flip): 80.91 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134-fe42f49e.pth - Config: configs/psanet/psanet_r101-d8_769x769_80k_cityscapes.py In Collection: psanet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 80000 Name: psanet_r101-d8_769x769_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 79.69 mIoU(ms+flip): 80.89 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550-7665827b.pth - Config: configs/psanet/psanet_r50-d8_512x512_80k_ade20k.py In Collection: psanet Metadata: backbone: R-50-D8 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 52.88 lr schd: 80000 memory (GB): 9.0 Name: psanet_r50-d8_512x512_80k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 41.14 mIoU(ms+flip): 41.91 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141-835e4b97.pth - Config: configs/psanet/psanet_r101-d8_512x512_80k_ade20k.py In Collection: psanet Metadata: backbone: R-101-D8 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 76.16 lr schd: 80000 memory (GB): 12.5 Name: psanet_r101-d8_512x512_80k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 43.8 mIoU(ms+flip): 44.75 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117-1fab60d4.pth - Config: configs/psanet/psanet_r50-d8_512x512_160k_ade20k.py In Collection: psanet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 160000 Name: psanet_r50-d8_512x512_160k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 41.67 mIoU(ms+flip): 42.95 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258-148077dd.pth - Config: configs/psanet/psanet_r101-d8_512x512_160k_ade20k.py In Collection: psanet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 160000 Name: psanet_r101-d8_512x512_160k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 43.74 mIoU(ms+flip): 45.38 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537-dbfa564c.pth - Config: configs/psanet/psanet_r50-d8_512x512_20k_voc12aug.py In Collection: psanet Metadata: backbone: R-50-D8 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 54.82 lr schd: 20000 memory (GB): 6.9 Name: psanet_r50-d8_512x512_20k_voc12aug Results: Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.39 mIoU(ms+flip): 77.34 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413-2f1bbaa1.pth - Config: configs/psanet/psanet_r101-d8_512x512_20k_voc12aug.py In Collection: psanet Metadata: backbone: R-101-D8 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 79.18 lr schd: 20000 memory (GB): 10.4 Name: psanet_r101-d8_512x512_20k_voc12aug Results: Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.91 mIoU(ms+flip): 79.3 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624-946fef11.pth - Config: configs/psanet/psanet_r50-d8_512x512_40k_voc12aug.py In Collection: psanet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 40000 Name: psanet_r50-d8_512x512_40k_voc12aug Results: Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.3 mIoU(ms+flip): 77.35 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946-f596afb5.pth - Config: configs/psanet/psanet_r101-d8_512x512_40k_voc12aug.py In Collection: psanet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 40000 Name: psanet_r101-d8_512x512_40k_voc12aug Results: Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.73 mIoU(ms+flip): 79.05 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946-1f560f9e.pth