# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import shutil from functools import partial from glob import glob import mmcv import numpy as np from PIL import Image COCO_LEN = 123287 clsID_to_trID = { 0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 10: 10, 12: 11, 13: 12, 14: 13, 15: 14, 16: 15, 17: 16, 18: 17, 19: 18, 20: 19, 21: 20, 22: 21, 23: 22, 24: 23, 26: 24, 27: 25, 30: 26, 31: 27, 32: 28, 33: 29, 34: 30, 35: 31, 36: 32, 37: 33, 38: 34, 39: 35, 40: 36, 41: 37, 42: 38, 43: 39, 45: 40, 46: 41, 47: 42, 48: 43, 49: 44, 50: 45, 51: 46, 52: 47, 53: 48, 54: 49, 55: 50, 56: 51, 57: 52, 58: 53, 59: 54, 60: 55, 61: 56, 62: 57, 63: 58, 64: 59, 66: 60, 69: 61, 71: 62, 72: 63, 73: 64, 74: 65, 75: 66, 76: 67, 77: 68, 78: 69, 79: 70, 80: 71, 81: 72, 83: 73, 84: 74, 85: 75, 86: 76, 87: 77, 88: 78, 89: 79, 91: 80, 92: 81, 93: 82, 94: 83, 95: 84, 96: 85, 97: 86, 98: 87, 99: 88, 100: 89, 101: 90, 102: 91, 103: 92, 104: 93, 105: 94, 106: 95, 107: 96, 108: 97, 109: 98, 110: 99, 111: 100, 112: 101, 113: 102, 114: 103, 115: 104, 116: 105, 117: 106, 118: 107, 119: 108, 120: 109, 121: 110, 122: 111, 123: 112, 124: 113, 125: 114, 126: 115, 127: 116, 128: 117, 129: 118, 130: 119, 131: 120, 132: 121, 133: 122, 134: 123, 135: 124, 136: 125, 137: 126, 138: 127, 139: 128, 140: 129, 141: 130, 142: 131, 143: 132, 144: 133, 145: 134, 146: 135, 147: 136, 148: 137, 149: 138, 150: 139, 151: 140, 152: 141, 153: 142, 154: 143, 155: 144, 156: 145, 157: 146, 158: 147, 159: 148, 160: 149, 161: 150, 162: 151, 163: 152, 164: 153, 165: 154, 166: 155, 167: 156, 168: 157, 169: 158, 170: 159, 171: 160, 172: 161, 173: 162, 174: 163, 175: 164, 176: 165, 177: 166, 178: 167, 179: 168, 180: 169, 181: 170, 255: 255 } def convert_to_trainID(maskpath, out_mask_dir, is_train): mask = np.array(Image.open(maskpath)) mask_copy = mask.copy() for clsID, trID in clsID_to_trID.items(): mask_copy[mask == clsID] = trID seg_filename = osp.join( out_mask_dir, 'train2017', osp.basename(maskpath).split('.')[0] + '_labelTrainIds.png') if is_train else osp.join( out_mask_dir, 'val2017', osp.basename(maskpath).split('.')[0] + '_labelTrainIds.png') Image.fromarray(mask_copy).save(seg_filename, 'PNG') def parse_args(): parser = argparse.ArgumentParser( description=\ 'Convert COCO Stuff 164k annotations to mmsegmentation format') # noqa parser.add_argument('coco_path', help='coco stuff path') parser.add_argument('-o', '--out_dir', help='output path') parser.add_argument( '--nproc', default=16, type=int, help='number of process') args = parser.parse_args() return args def main(): args = parse_args() coco_path = args.coco_path nproc = args.nproc out_dir = args.out_dir or coco_path out_img_dir = osp.join(out_dir, 'images') out_mask_dir = osp.join(out_dir, 'annotations') mmcv.mkdir_or_exist(osp.join(out_mask_dir, 'train2017')) mmcv.mkdir_or_exist(osp.join(out_mask_dir, 'val2017')) if out_dir != coco_path: shutil.copytree(osp.join(coco_path, 'images'), out_img_dir) train_list = glob(osp.join(coco_path, 'annotations', 'train2017', '*.png')) train_list = [file for file in train_list if '_labelTrainIds' not in file] test_list = glob(osp.join(coco_path, 'annotations', 'val2017', '*.png')) test_list = [file for file in test_list if '_labelTrainIds' not in file] assert (len(train_list) + len(test_list)) == COCO_LEN, 'Wrong length of list {} & {}'.format( len(train_list), len(test_list)) if args.nproc > 1: mmcv.track_parallel_progress( partial( convert_to_trainID, out_mask_dir=out_mask_dir, is_train=True), train_list, nproc=nproc) mmcv.track_parallel_progress( partial( convert_to_trainID, out_mask_dir=out_mask_dir, is_train=False), test_list, nproc=nproc) else: mmcv.track_progress( partial( convert_to_trainID, out_mask_dir=out_mask_dir, is_train=True), train_list) mmcv.track_progress( partial( convert_to_trainID, out_mask_dir=out_mask_dir, is_train=False), test_list) print('Done!') if __name__ == '__main__': main()