Models: - Name: vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: ViT-B + MLN crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 144.09 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 47.71 mIoU(ms+flip): 49.51 Config: configs/vit/vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/upernet_vit-b16_mln_512x512_80k_ade20k_20210624_130547-0403cee1.pth - Name: vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: ViT-B + MLN crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 131.93 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 46.75 mIoU(ms+flip): 48.46 Config: configs/vit/vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/upernet_vit-b16_mln_512x512_160k_ade20k_20210624_130547-852fa768.pth - Name: vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: ViT-B + LN + MLN crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 146.63 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.21 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 47.73 mIoU(ms+flip): 49.95 Config: configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/upernet_vit-b16_ln_mln_512x512_160k_ade20k_20210621_172828-f444c077.pth - Name: vit_deit-s16_upernet_8xb2-80k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: DeiT-S crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 33.5 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 4.68 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.96 mIoU(ms+flip): 43.79 Config: configs/vit/vit_deit-s16_upernet_8xb2-80k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/upernet_deit-s16_512x512_80k_ade20k_20210624_095228-afc93ec2.pth - Name: vit_deit-s16_upernet_8xb2-160k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: DeiT-S crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 34.26 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 4.68 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.87 mIoU(ms+flip): 43.79 Config: configs/vit/vit_deit-s16_upernet_8xb2-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/upernet_deit-s16_512x512_160k_ade20k_20210621_160903-5110d916.pth - Name: vit_deit-s16_mln_upernet_8xb2-160k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: DeiT-S + MLN crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 89.45 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 5.69 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.82 mIoU(ms+flip): 45.07 Config: configs/vit/vit_deit-s16_mln_upernet_8xb2-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/upernet_deit-s16_mln_512x512_160k_ade20k_20210621_161021-fb9a5dfb.pth - Name: vit_deit-s16-ln_mln_upernet_512x512_160k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: DeiT-S + LN + MLN crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 80.71 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 5.69 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.52 mIoU(ms+flip): 45.01 Config: configs/vit/vit_deit-s16-ln_mln_upernet_512x512_160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/upernet_deit-s16_ln_mln_512x512_160k_ade20k_20210621_161021-c0cd652f.pth - Name: vit_deit-b16_upernet_8xb2-80k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: DeiT-B crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 103.2 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 7.75 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.24 mIoU(ms+flip): 46.73 Config: configs/vit/vit_deit-b16_upernet_8xb2-80k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/upernet_deit-b16_512x512_80k_ade20k_20210624_130529-1e090789.pth - Name: vit_deit-b16_upernet_8xb2-160k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: DeiT-B crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 96.25 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 7.75 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.36 mIoU(ms+flip): 47.16 Config: configs/vit/vit_deit-b16_upernet_8xb2-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/upernet_deit-b16_512x512_160k_ade20k_20210621_180100-828705d7.pth - Name: vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: DeiT-B + MLN crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 128.53 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.21 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.46 mIoU(ms+flip): 47.16 Config: configs/vit/vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/upernet_deit-b16_mln_512x512_160k_ade20k_20210621_191949-4e1450f3.pth - Name: vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512 In Collection: UPerNet Metadata: backbone: DeiT-B + LN + MLN crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 129.03 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.21 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.37 mIoU(ms+flip): 47.23 Config: configs/vit/vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/upernet_deit-b16_ln_mln_512x512_160k_ade20k_20210623_153535-8a959c14.pth