{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import cv2\n", "\n", "import sam # noqa: F401\n", "from sam.sam_inferencer import SAMInferencer\n", "\n", "\n", "def show_mask(mask, ax, random_color=False):\n", " if random_color:\n", " color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)\n", " else:\n", " color = np.array([30/255, 144/255, 255/255, 0.6])\n", " h, w = mask.shape[-2:]\n", " mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)\n", " ax.imshow(mask_image)\n", " \n", "def show_points(coords, labels, ax, marker_size=375):\n", " pos_points = coords[labels==1]\n", " neg_points = coords[labels==0]\n", " ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)\n", " ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) \n", " \n", "def show_box(box, ax):\n", " x0, y0 = box[0], box[1]\n", " w, h = box[2] - box[0], box[3] - box[1]\n", " ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))\n", "\n", "image = cv2.imread('../../demo/demo.png')\n", "image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n", "plt.figure(figsize=(10,10))\n", "plt.imshow(image)\n", "plt.axis('on')\n", "plt.show()\n", "print(image.shape)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "inferencer = SAMInferencer(arch='huge')\n", "inferencer.set_image(image)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "input_point = np.array([[280, 230], [500, 300]])\n", "input_label = np.array([1, 1])\n", "plt.figure(figsize=(10,10))\n", "plt.imshow(image)\n", "show_points(input_point, input_label, plt.gca())\n", "plt.axis('on')\n", "plt.show() " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "masks, scores, logits = inferencer.predict(\n", " point_coords=input_point,\n", " point_labels=input_label,\n", " multimask_output=True,\n", ")\n", "for i, (mask, score) in enumerate(zip(masks, scores)):\n", " plt.figure(figsize=(10,10))\n", " plt.imshow(image)\n", " show_mask(mask, plt.gca(), random_color=True)\n", " show_points(input_point, input_label, plt.gca())\n", " plt.title(f\"Mask {i+1}, Score: {score:.3f}\", fontsize=18)\n", " plt.axis('off')\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "pt1.13", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }