# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import mmcv import pytest from mmseg.datasets.transforms import * # noqa from mmseg.registry import TRANSFORMS def test_multi_scale_flip_aug(): # test exception with pytest.raises(TypeError): tta_transform = dict( type='TestTimeAug', transforms=[dict(type='Resize', keep_ratio=False)], ) TRANSFORMS.build(tta_transform) tta_transform = dict( type='TestTimeAug', transforms=[[ dict(type='Resize', scale=scale, keep_ratio=False) for scale in [(256, 256), (512, 512), (1024, 1024)] ], [dict(type='mmseg.PackSegInputs')]]) tta_module = TRANSFORMS.build(tta_transform) results = dict() # (288, 512, 3) img = mmcv.imread( osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color') results['img'] = img results['ori_shape'] = img.shape results['ori_height'] = img.shape[0] results['ori_width'] = img.shape[1] # Set initial values for default meta_keys results['pad_shape'] = img.shape results['scale_factor'] = 1.0 tta_results = tta_module(results.copy()) assert [img.shape for img in tta_results['inputs']] == [(3, 256, 256), (3, 512, 512), (3, 1024, 1024)] tta_transform = dict( type='TestTimeAug', transforms=[ [ dict(type='Resize', scale=scale, keep_ratio=False) for scale in [(256, 256), (512, 512), (1024, 1024)] ], [ dict(type='RandomFlip', prob=0., direction='horizontal'), dict(type='RandomFlip', prob=1., direction='horizontal') ], [dict(type='mmseg.PackSegInputs')] ]) tta_module = TRANSFORMS.build(tta_transform) tta_results: dict = tta_module(results.copy()) assert [img.shape for img in tta_results['inputs']] == [(3, 256, 256), (3, 256, 256), (3, 512, 512), (3, 512, 512), (3, 1024, 1024), (3, 1024, 1024)] assert [ data_sample.metainfo['flip'] for data_sample in tta_results['data_samples'] ] == [False, True, False, True, False, True] tta_transform = dict( type='TestTimeAug', transforms=[[dict(type='Resize', scale=(512, 512), keep_ratio=False)], [dict(type='mmseg.PackSegInputs')]]) tta_module = TRANSFORMS.build(tta_transform) tta_results = tta_module(results.copy()) assert [tta_results['inputs'][0].shape] == [(3, 512, 512)] tta_transform = dict( type='TestTimeAug', transforms=[ [dict(type='Resize', scale=(512, 512), keep_ratio=False)], [ dict(type='RandomFlip', prob=0., direction='horizontal'), dict(type='RandomFlip', prob=1., direction='horizontal') ], [dict(type='mmseg.PackSegInputs')] ]) tta_module = TRANSFORMS.build(tta_transform) tta_results = tta_module(results.copy()) assert [img.shape for img in tta_results['inputs']] == [(3, 512, 512), (3, 512, 512)] assert [ data_sample.metainfo['flip'] for data_sample in tta_results['data_samples'] ] == [False, True] tta_transform = dict( type='TestTimeAug', transforms=[[ dict(type='Resize', scale_factor=r, keep_ratio=False) for r in [0.5, 1.0, 2.0] ], [dict(type='mmseg.PackSegInputs')]]) tta_module = TRANSFORMS.build(tta_transform) tta_results = tta_module(results.copy()) assert [img.shape for img in tta_results['inputs']] == [(3, 144, 256), (3, 288, 512), (3, 576, 1024)] tta_transform = dict( type='TestTimeAug', transforms=[ [ dict(type='Resize', scale_factor=r, keep_ratio=True) for r in [0.5, 1.0, 2.0] ], [ dict(type='RandomFlip', prob=0., direction='horizontal'), dict(type='RandomFlip', prob=1., direction='horizontal') ], [dict(type='mmseg.PackSegInputs')] ]) tta_module = TRANSFORMS.build(tta_transform) tta_results = tta_module(results.copy()) assert [img.shape for img in tta_results['inputs']] == [(3, 144, 256), (3, 144, 256), (3, 288, 512), (3, 288, 512), (3, 576, 1024), (3, 576, 1024)] assert [ data_sample.metainfo['flip'] for data_sample in tta_results['data_samples'] ] == [False, True, False, True, False, True]