import mmcv
import numpy as np
import torch


def intersect_and_union(pred_label,
                        label,
                        num_classes,
                        ignore_index,
                        label_map=dict(),
                        reduce_zero_label=False):
    """Calculate intersection and Union.

    Args:
        pred_label (ndarray | str): Prediction segmentation map
            or predict result filename.
        label (ndarray | str): Ground truth segmentation map
            or label filename.
        num_classes (int): Number of categories.
        ignore_index (int): Index that will be ignored in evaluation.
        label_map (dict): Mapping old labels to new labels. The parameter will
            work only when label is str. Default: dict().
        reduce_zero_label (bool): Wether ignore zero label. The parameter will
            work only when label is str. Default: False.

     Returns:
         torch.Tensor: The intersection of prediction and ground truth
            histogram on all classes.
         torch.Tensor: The union of prediction and ground truth histogram on
            all classes.
         torch.Tensor: The prediction histogram on all classes.
         torch.Tensor: The ground truth histogram on all classes.
    """

    if isinstance(pred_label, str):
        pred_label = torch.from_numpy(np.load(pred_label))
    else:
        pred_label = torch.from_numpy((pred_label))

    if isinstance(label, str):
        label = torch.from_numpy(
            mmcv.imread(label, flag='unchanged', backend='pillow'))
    else:
        label = torch.from_numpy(label)

    if label_map is not None:
        for old_id, new_id in label_map.items():
            label[label == old_id] = new_id
    if reduce_zero_label:
        label[label == 0] = 255
        label = label - 1
        label[label == 254] = 255

    mask = (label != ignore_index)
    pred_label = pred_label[mask]
    label = label[mask]

    intersect = pred_label[pred_label == label]
    area_intersect = torch.histc(
        intersect.float(), bins=(num_classes), min=0, max=num_classes - 1)
    area_pred_label = torch.histc(
        pred_label.float(), bins=(num_classes), min=0, max=num_classes - 1)
    area_label = torch.histc(
        label.float(), bins=(num_classes), min=0, max=num_classes - 1)
    area_union = area_pred_label + area_label - area_intersect
    return area_intersect, area_union, area_pred_label, area_label


def total_intersect_and_union(results,
                              gt_seg_maps,
                              num_classes,
                              ignore_index,
                              label_map=dict(),
                              reduce_zero_label=False):
    """Calculate Total Intersection and Union.

    Args:
        results (list[ndarray] | list[str]): List of prediction segmentation
            maps or list of prediction result filenames.
        gt_seg_maps (list[ndarray] | list[str]): list of ground truth
            segmentation maps or list of label filenames.
        num_classes (int): Number of categories.
        ignore_index (int): Index that will be ignored in evaluation.
        label_map (dict): Mapping old labels to new labels. Default: dict().
        reduce_zero_label (bool): Wether ignore zero label. Default: False.

     Returns:
         ndarray: The intersection of prediction and ground truth histogram
             on all classes.
         ndarray: The union of prediction and ground truth histogram on all
             classes.
         ndarray: The prediction histogram on all classes.
         ndarray: The ground truth histogram on all classes.
    """
    num_imgs = len(results)
    assert len(gt_seg_maps) == num_imgs
    total_area_intersect = torch.zeros((num_classes, ), dtype=torch.float64)
    total_area_union = torch.zeros((num_classes, ), dtype=torch.float64)
    total_area_pred_label = torch.zeros((num_classes, ), dtype=torch.float64)
    total_area_label = torch.zeros((num_classes, ), dtype=torch.float64)
    for i in range(num_imgs):
        area_intersect, area_union, area_pred_label, area_label = \
            intersect_and_union(
                results[i], gt_seg_maps[i], num_classes, ignore_index,
                label_map, reduce_zero_label)
        total_area_intersect += area_intersect
        total_area_union += area_union
        total_area_pred_label += area_pred_label
        total_area_label += area_label
    return total_area_intersect, total_area_union, total_area_pred_label, \
        total_area_label


def mean_iou(results,
             gt_seg_maps,
             num_classes,
             ignore_index,
             nan_to_num=None,
             label_map=dict(),
             reduce_zero_label=False):
    """Calculate Mean Intersection and Union (mIoU)

    Args:
        results (list[ndarray] | list[str]): List of prediction segmentation
            maps or list of prediction result filenames.
        gt_seg_maps (list[ndarray] | list[str]): list of ground truth
            segmentation maps or list of label filenames.
        num_classes (int): Number of categories.
        ignore_index (int): Index that will be ignored in evaluation.
        nan_to_num (int, optional): If specified, NaN values will be replaced
            by the numbers defined by the user. Default: None.
        label_map (dict): Mapping old labels to new labels. Default: dict().
        reduce_zero_label (bool): Wether ignore zero label. Default: False.

     Returns:
         float: Overall accuracy on all images.
         ndarray: Per category accuracy, shape (num_classes, ).
         ndarray: Per category IoU, shape (num_classes, ).
    """
    all_acc, acc, iou = eval_metrics(
        results=results,
        gt_seg_maps=gt_seg_maps,
        num_classes=num_classes,
        ignore_index=ignore_index,
        metrics=['mIoU'],
        nan_to_num=nan_to_num,
        label_map=label_map,
        reduce_zero_label=reduce_zero_label)
    return all_acc, acc, iou


def mean_dice(results,
              gt_seg_maps,
              num_classes,
              ignore_index,
              nan_to_num=None,
              label_map=dict(),
              reduce_zero_label=False):
    """Calculate Mean Dice (mDice)

    Args:
        results (list[ndarray] | list[str]): List of prediction segmentation
            maps or list of prediction result filenames.
        gt_seg_maps (list[ndarray] | list[str]): list of ground truth
            segmentation maps or list of label filenames.
        num_classes (int): Number of categories.
        ignore_index (int): Index that will be ignored in evaluation.
        nan_to_num (int, optional): If specified, NaN values will be replaced
            by the numbers defined by the user. Default: None.
        label_map (dict): Mapping old labels to new labels. Default: dict().
        reduce_zero_label (bool): Wether ignore zero label. Default: False.

     Returns:
         float: Overall accuracy on all images.
         ndarray: Per category accuracy, shape (num_classes, ).
         ndarray: Per category dice, shape (num_classes, ).
    """

    all_acc, acc, dice = eval_metrics(
        results=results,
        gt_seg_maps=gt_seg_maps,
        num_classes=num_classes,
        ignore_index=ignore_index,
        metrics=['mDice'],
        nan_to_num=nan_to_num,
        label_map=label_map,
        reduce_zero_label=reduce_zero_label)
    return all_acc, acc, dice


def eval_metrics(results,
                 gt_seg_maps,
                 num_classes,
                 ignore_index,
                 metrics=['mIoU'],
                 nan_to_num=None,
                 label_map=dict(),
                 reduce_zero_label=False):
    """Calculate evaluation metrics
    Args:
        results (list[ndarray] | list[str]): List of prediction segmentation
            maps or list of prediction result filenames.
        gt_seg_maps (list[ndarray] | list[str]): list of ground truth
            segmentation maps or list of label filenames.
        num_classes (int): Number of categories.
        ignore_index (int): Index that will be ignored in evaluation.
        metrics (list[str] | str): Metrics to be evaluated, 'mIoU' and 'mDice'.
        nan_to_num (int, optional): If specified, NaN values will be replaced
            by the numbers defined by the user. Default: None.
        label_map (dict): Mapping old labels to new labels. Default: dict().
        reduce_zero_label (bool): Wether ignore zero label. Default: False.
     Returns:
         float: Overall accuracy on all images.
         ndarray: Per category accuracy, shape (num_classes, ).
         ndarray: Per category evaluation metrics, shape (num_classes, ).
    """
    if isinstance(metrics, str):
        metrics = [metrics]
    allowed_metrics = ['mIoU', 'mDice']
    if not set(metrics).issubset(set(allowed_metrics)):
        raise KeyError('metrics {} is not supported'.format(metrics))

    total_area_intersect, total_area_union, total_area_pred_label, \
        total_area_label = total_intersect_and_union(
            results, gt_seg_maps, num_classes, ignore_index, label_map,
            reduce_zero_label)
    all_acc = total_area_intersect.sum() / total_area_label.sum()
    acc = total_area_intersect / total_area_label
    ret_metrics = [all_acc, acc]
    for metric in metrics:
        if metric == 'mIoU':
            iou = total_area_intersect / total_area_union
            ret_metrics.append(iou)
        elif metric == 'mDice':
            dice = 2 * total_area_intersect / (
                total_area_pred_label + total_area_label)
            ret_metrics.append(dice)
    ret_metrics = [metric.numpy() for metric in ret_metrics]
    if nan_to_num is not None:
        ret_metrics = [
            np.nan_to_num(metric, nan=nan_to_num) for metric in ret_metrics
        ]
    return ret_metrics