# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp import tempfile import mmcv import numpy as np from mmcv.transforms import LoadImageFromFile from mmseg.datasets.pipelines import LoadAnnotations class TestLoading(object): @classmethod def setup_class(cls): cls.data_prefix = osp.join(osp.dirname(__file__), '../data') def test_load_img(self): results = dict(img_path=osp.join(self.data_prefix, 'color.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['img_path'] == osp.join(self.data_prefix, 'color.jpg') assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 assert results['ori_shape'] == results['img'].shape[:2] assert repr(transform) == transform.__class__.__name__ + \ "(to_float32=False, color_type='color'," + \ " imdecode_backend='cv2', file_client_args={'backend': 'disk'})" # to_float32 transform = LoadImageFromFile(to_float32=True) results = transform(copy.deepcopy(results)) assert results['img'].dtype == np.float32 # gray image results = dict(img_path=osp.join(self.data_prefix, 'gray.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 transform = LoadImageFromFile(color_type='unchanged') results = transform(copy.deepcopy(results)) assert results['img'].shape == (288, 512) assert results['img'].dtype == np.uint8 def test_load_seg(self): seg_path = osp.join(self.data_prefix, 'seg.png') results = dict(seg_map_path=seg_path, seg_fields=[]) transform = LoadAnnotations() results = transform(copy.deepcopy(results)) assert results['gt_seg_map'].shape == (288, 512) assert results['gt_seg_map'].dtype == np.uint8 assert repr(transform) == transform.__class__.__name__ + \ "(reduce_zero_label=False,imdecode_backend='pillow')" + \ "file_client_args={'backend': 'disk'})" # reduce_zero_label transform = LoadAnnotations(reduce_zero_label=True) results = transform(copy.deepcopy(results)) assert results['gt_seg_map'].shape == (288, 512) assert results['gt_seg_map'].dtype == np.uint8 def test_load_seg_custom_classes(self): test_img = np.random.rand(10, 10) test_gt = np.zeros_like(test_img) test_gt[2:4, 2:4] = 1 test_gt[2:4, 6:8] = 2 test_gt[6:8, 2:4] = 3 test_gt[6:8, 6:8] = 4 tmp_dir = tempfile.TemporaryDirectory() img_path = osp.join(tmp_dir.name, 'img.jpg') gt_path = osp.join(tmp_dir.name, 'gt.png') mmcv.imwrite(test_img, img_path) mmcv.imwrite(test_gt, gt_path) # test only train with label with id 3 results = dict( img_path=img_path, seg_map_path=gt_path, label_map={ 0: 0, 1: 0, 2: 0, 3: 1, 4: 0 }, seg_fields=[]) load_imgs = LoadImageFromFile() results = load_imgs(copy.deepcopy(results)) load_anns = LoadAnnotations() results = load_anns(copy.deepcopy(results)) gt_array = results['gt_seg_map'] true_mask = np.zeros_like(gt_array) true_mask[6:8, 2:4] = 1 assert results['seg_fields'] == ['gt_seg_map'] assert gt_array.shape == (10, 10) assert gt_array.dtype == np.uint8 np.testing.assert_array_equal(gt_array, true_mask) # test only train with label with id 4 and 3 results = dict( img_path=osp.join(self.data_prefix, 'color.jpg'), seg_map_path=gt_path, label_map={ 0: 0, 1: 0, 2: 0, 3: 2, 4: 1 }, seg_fields=[]) load_imgs = LoadImageFromFile() results = load_imgs(copy.deepcopy(results)) load_anns = LoadAnnotations() results = load_anns(copy.deepcopy(results)) gt_array = results['gt_seg_map'] true_mask = np.zeros_like(gt_array) true_mask[6:8, 2:4] = 2 true_mask[6:8, 6:8] = 1 assert results['seg_fields'] == ['gt_seg_map'] assert gt_array.shape == (10, 10) assert gt_array.dtype == np.uint8 np.testing.assert_array_equal(gt_array, true_mask) # test no custom classes results = dict(img_path=img_path, seg_map_path=gt_path, seg_fields=[]) load_imgs = LoadImageFromFile() results = load_imgs(copy.deepcopy(results)) load_anns = LoadAnnotations() results = load_anns(copy.deepcopy(results)) gt_array = results['gt_seg_map'] assert results['seg_fields'] == ['gt_seg_map'] assert gt_array.shape == (10, 10) assert gt_array.dtype == np.uint8 np.testing.assert_array_equal(gt_array, test_gt) tmp_dir.cleanup()