_base_ = [ '../_base_/models/dpt_vit-b16.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] # AdamW optimizer, no weight decay for position embedding & layer norm # in backbone optimizer = dict( _delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, paramwise_cfg=dict( custom_keys={ 'pos_embed': dict(decay_mult=0.), 'cls_token': dict(decay_mult=0.), 'norm': dict(decay_mult=0.) })) lr_config = dict( _delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data = dict(samples_per_gpu=2, workers_per_gpu=2)