Collections: - Name: gcnet Metadata: Training Data: - Cityscapes - ADE20K - Pascal VOC 2012 + Aug Paper: URL: https://arxiv.org/abs/1904.11492 Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' README: configs/gcnet/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Version: v0.17.0 Converted From: Code: https://github.com/xvjiarui/GCNet Models: - Name: gcnet_r50-d8_512x1024_40k_cityscapes In Collection: gcnet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 254.45 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) memory (GB): 5.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.69 mIoU(ms+flip): 78.56 Config: configs/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth - Name: gcnet_r101-d8_512x1024_40k_cityscapes In Collection: gcnet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 383.14 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.28 mIoU(ms+flip): 79.34 Config: configs/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth - Name: gcnet_r50-d8_769x769_40k_cityscapes In Collection: gcnet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 598.8 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) memory (GB): 6.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.12 mIoU(ms+flip): 80.09 Config: configs/gcnet/gcnet_r50-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth - Name: gcnet_r101-d8_769x769_40k_cityscapes In Collection: gcnet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 884.96 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) memory (GB): 10.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.95 mIoU(ms+flip): 80.71 Config: configs/gcnet/gcnet_r101-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth - Name: gcnet_r50-d8_512x1024_80k_cityscapes In Collection: gcnet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.48 mIoU(ms+flip): 80.01 Config: configs/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth - Name: gcnet_r101-d8_512x1024_80k_cityscapes In Collection: gcnet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.03 mIoU(ms+flip): 79.84 Config: configs/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth - Name: gcnet_r50-d8_769x769_80k_cityscapes In Collection: gcnet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.68 mIoU(ms+flip): 80.66 Config: configs/gcnet/gcnet_r50-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth - Name: gcnet_r101-d8_769x769_80k_cityscapes In Collection: gcnet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.18 mIoU(ms+flip): 80.71 Config: configs/gcnet/gcnet_r101-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth - Name: gcnet_r50-d8_512x512_80k_ade20k In Collection: gcnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 42.77 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) memory (GB): 8.5 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.47 mIoU(ms+flip): 42.85 Config: configs/gcnet/gcnet_r50-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth - Name: gcnet_r101-d8_512x512_80k_ade20k In Collection: gcnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 65.79 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) memory (GB): 12.0 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.82 mIoU(ms+flip): 44.54 Config: configs/gcnet/gcnet_r101-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth - Name: gcnet_r50-d8_512x512_160k_ade20k In Collection: gcnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.37 mIoU(ms+flip): 43.52 Config: configs/gcnet/gcnet_r50-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth - Name: gcnet_r101-d8_512x512_160k_ade20k In Collection: gcnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.69 mIoU(ms+flip): 45.21 Config: configs/gcnet/gcnet_r101-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth - Name: gcnet_r50-d8_512x512_20k_voc12aug In Collection: gcnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 42.83 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) memory (GB): 5.8 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.42 mIoU(ms+flip): 77.51 Config: configs/gcnet/gcnet_r50-d8_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth - Name: gcnet_r101-d8_512x512_20k_voc12aug In Collection: gcnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 67.57 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.41 mIoU(ms+flip): 78.56 Config: configs/gcnet/gcnet_r101-d8_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth - Name: gcnet_r50-d8_512x512_40k_voc12aug In Collection: gcnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.24 mIoU(ms+flip): 77.63 Config: configs/gcnet/gcnet_r50-d8_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth - Name: gcnet_r101-d8_512x512_40k_voc12aug In Collection: gcnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.84 mIoU(ms+flip): 78.59 Config: configs/gcnet/gcnet_r101-d8_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth