_base_ = [ '../_base_/models/setr_mla.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( pretrained='pretrain/vit_large_patch16_384.pth', backbone=dict(img_size=(512, 512), drop_rate=0.), decode_head=dict(num_classes=150), auxiliary_head=[ dict( type='FCNHead', in_channels=256, channels=256, in_index=0, dropout_ratio=0, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU'), num_convs=0, kernel_size=1, concat_input=False, num_classes=150, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='FCNHead', in_channels=256, channels=256, in_index=1, dropout_ratio=0, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU'), num_convs=0, kernel_size=1, concat_input=False, num_classes=150, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='FCNHead', in_channels=256, channels=256, in_index=2, dropout_ratio=0, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU'), num_convs=0, kernel_size=1, concat_input=False, num_classes=150, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='FCNHead', in_channels=256, channels=256, in_index=3, dropout_ratio=0, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU'), num_convs=0, kernel_size=1, concat_input=False, num_classes=150, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), ], test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(341, 341)), ) optimizer = dict( lr=0.001, weight_decay=0.0, paramwise_cfg=dict(custom_keys={'head': dict(lr_mult=10.)})) # num_gpus: 8 -> batch_size: 8 data = dict(samples_per_gpu=1)