import copy import os.path as osp import numpy as np from mmseg.datasets.pipelines import LoadAnnotations, LoadImageFromFile class TestLoading(object): @classmethod def setup_class(cls): cls.data_prefix = osp.join(osp.dirname(__file__), '../data') def test_load_img(self): results = dict( img_prefix=self.data_prefix, img_info=dict(filename='color.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['filename'] == osp.join(self.data_prefix, 'color.jpg') assert results['ori_filename'] == 'color.jpg' assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 assert results['img_shape'] == (288, 512, 3) assert results['ori_shape'] == (288, 512, 3) assert results['pad_shape'] == (288, 512, 3) assert results['scale_factor'] == 1.0 np.testing.assert_equal(results['img_norm_cfg']['mean'], np.zeros(3, dtype=np.float32)) assert repr(transform) == transform.__class__.__name__ + \ "(to_float32=False,color_type='color',imdecode_backend='cv2')" # no img_prefix results = dict( img_prefix=None, img_info=dict(filename='tests/data/color.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['filename'] == 'tests/data/color.jpg' assert results['ori_filename'] == 'tests/data/color.jpg' assert results['img'].shape == (288, 512, 3) # to_float32 transform = LoadImageFromFile(to_float32=True) results = transform(copy.deepcopy(results)) assert results['img'].dtype == np.float32 # gray image results = dict( img_prefix=self.data_prefix, img_info=dict(filename='gray.jpg')) transform = LoadImageFromFile() results = transform(copy.deepcopy(results)) assert results['img'].shape == (288, 512, 3) assert results['img'].dtype == np.uint8 transform = LoadImageFromFile(color_type='unchanged') results = transform(copy.deepcopy(results)) assert results['img'].shape == (288, 512) assert results['img'].dtype == np.uint8 np.testing.assert_equal(results['img_norm_cfg']['mean'], np.zeros(1, dtype=np.float32)) def test_load_seg(self): results = dict( seg_prefix=self.data_prefix, ann_info=dict(seg_map='seg.png'), seg_fields=[]) transform = LoadAnnotations() results = transform(copy.deepcopy(results)) assert results['seg_fields'] == ['gt_semantic_seg'] assert results['gt_semantic_seg'].shape == (288, 512) assert results['gt_semantic_seg'].dtype == np.uint8 assert repr(transform) == transform.__class__.__name__ + \ "(reduce_zero_label=False,imdecode_backend='pillow')" # no img_prefix results = dict( seg_prefix=None, ann_info=dict(seg_map='tests/data/seg.png'), seg_fields=[]) transform = LoadAnnotations() results = transform(copy.deepcopy(results)) assert results['gt_semantic_seg'].shape == (288, 512) assert results['gt_semantic_seg'].dtype == np.uint8 # reduce_zero_label transform = LoadAnnotations(reduce_zero_label=True) results = transform(copy.deepcopy(results)) assert results['gt_semantic_seg'].shape == (288, 512) assert results['gt_semantic_seg'].dtype == np.uint8 # mmcv backend results = dict( seg_prefix=self.data_prefix, ann_info=dict(seg_map='seg.png'), seg_fields=[]) transform = LoadAnnotations(imdecode_backend='pillow') results = transform(copy.deepcopy(results)) # this image is saved by PIL assert results['gt_semantic_seg'].shape == (288, 512) assert results['gt_semantic_seg'].dtype == np.uint8