# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn import torch.nn.functional as F from mmseg.core import add_prefix from mmseg.ops import resize from mmseg.registry import MODELS from .base import BaseSegmentor @MODELS.register_module() class EncoderDecoder(BaseSegmentor): """Encoder Decoder segmentors. EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. Note that auxiliary_head is only used for deep supervision during training, which could be dumped during inference. """ def __init__(self, backbone, decode_head, neck=None, auxiliary_head=None, train_cfg=None, test_cfg=None, preprocess_cfg=None, pretrained=None, init_cfg=None): super(EncoderDecoder, self).__init__( preprocess_cfg=preprocess_cfg, init_cfg=init_cfg) if pretrained is not None: assert backbone.get('pretrained') is None, \ 'both backbone and segmentor set pretrained weight' backbone.pretrained = pretrained self.backbone = MODELS.build(backbone) if neck is not None: self.neck = MODELS.build(neck) self._init_decode_head(decode_head) self._init_auxiliary_head(auxiliary_head) self.train_cfg = train_cfg self.test_cfg = test_cfg assert self.with_decode_head def _init_decode_head(self, decode_head): """Initialize ``decode_head``""" self.decode_head = MODELS.build(decode_head) self.align_corners = self.decode_head.align_corners self.num_classes = self.decode_head.num_classes def _init_auxiliary_head(self, auxiliary_head): """Initialize ``auxiliary_head``""" if auxiliary_head is not None: if isinstance(auxiliary_head, list): self.auxiliary_head = nn.ModuleList() for head_cfg in auxiliary_head: self.auxiliary_head.append(MODELS.build(head_cfg)) else: self.auxiliary_head = MODELS.build(auxiliary_head) def extract_feat(self, batch_inputs): """Extract features from images.""" x = self.backbone(batch_inputs) if self.with_neck: x = self.neck(x) return x def encode_decode(self, batch_inputs, batch_img_metas): """Encode images with backbone and decode into a semantic segmentation map of the same size as input.""" x = self.extract_feat(batch_inputs) out = self._decode_head_forward_test(x, batch_img_metas) out = resize( input=out, size=batch_inputs.shape[2:], mode='bilinear', align_corners=self.align_corners) return out def _decode_head_forward_train(self, batch_inputs, batch_data_samples): """Run forward function and calculate loss for decode head in training.""" losses = dict() loss_decode = self.decode_head.forward_train(batch_inputs, batch_data_samples, self.train_cfg) losses.update(add_prefix(loss_decode, 'decode')) return losses def _decode_head_forward_test(self, batch_inputs, batch_img_metas): """Run forward function and calculate loss for decode head in inference.""" seg_logits = self.decode_head.forward_test(batch_inputs, batch_img_metas, self.test_cfg) return seg_logits def _auxiliary_head_forward_train(self, batch_inputs, batch_data_samples): """Run forward function and calculate loss for auxiliary head in training.""" losses = dict() if isinstance(self.auxiliary_head, nn.ModuleList): for idx, aux_head in enumerate(self.auxiliary_head): loss_aux = aux_head.forward_train(batch_inputs, batch_data_samples, self.train_cfg) losses.update(add_prefix(loss_aux, f'aux_{idx}')) else: loss_aux = self.auxiliary_head.forward_train( batch_inputs, batch_data_samples, self.train_cfg) losses.update(add_prefix(loss_aux, 'aux')) return losses def forward_dummy(self, batch_inputs, batch_img_metas): """Dummy forward function.""" seg_logit = self.encode_decode(batch_inputs, batch_img_metas) return seg_logit def forward_train(self, batch_inputs, batch_data_samples): """Forward function for training. Args: img (Tensor): Input images. batch_data_samples (list[:obj:`SegDataSample`]): The seg data samples. It usually includes information such as `img_metas` or `gt_semantic_seg`. Returns: dict[str, Tensor]: a dictionary of loss components """ x = self.extract_feat(batch_inputs) losses = dict() loss_decode = self._decode_head_forward_train(x, batch_data_samples) losses.update(loss_decode) if self.with_auxiliary_head: loss_aux = self._auxiliary_head_forward_train( x, batch_data_samples) losses.update(loss_aux) return losses # TODO refactor def slide_inference(self, batch_inputs, batch_img_metas, rescale): """Inference by sliding-window with overlap. If h_crop > h_img or w_crop > w_img, the small patch will be used to decode without padding. Args: batch_inputs (tensor): the tensor should have a shape NxCxHxW, which contains all images in the batch. batch_img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. Returns: tensor: get seg_logit. """ h_stride, w_stride = self.test_cfg.stride h_crop, w_crop = self.test_cfg.crop_size batch_size, _, h_img, w_img = batch_inputs.size() num_classes = self.num_classes h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 preds = batch_inputs.new_zeros((batch_size, num_classes, h_img, w_img)) count_mat = batch_inputs.new_zeros((batch_size, 1, h_img, w_img)) for h_idx in range(h_grids): for w_idx in range(w_grids): y1 = h_idx * h_stride x1 = w_idx * w_stride y2 = min(y1 + h_crop, h_img) x2 = min(x1 + w_crop, w_img) y1 = max(y2 - h_crop, 0) x1 = max(x2 - w_crop, 0) crop_img = batch_inputs[:, :, y1:y2, x1:x2] crop_seg_logit = self.encode_decode(crop_img, batch_img_metas) preds += F.pad(crop_seg_logit, (int(x1), int(preds.shape[3] - x2), int(y1), int(preds.shape[2] - y2))) count_mat[:, :, y1:y2, x1:x2] += 1 assert (count_mat == 0).sum() == 0 preds = preds / count_mat if rescale: preds = resize( preds, size=batch_img_metas[0]['ori_shape'][:2], mode='bilinear', align_corners=self.align_corners, warning=False) return preds def whole_inference(self, batch_inputs, batch_img_metas, rescale): """Inference with full image.""" seg_logit = self.encode_decode(batch_inputs, batch_img_metas) if rescale: size = batch_img_metas[0]['ori_shape'][:2] seg_logit = resize( seg_logit, size=size, mode='bilinear', align_corners=self.align_corners, warning=False) return seg_logit def inference(self, batch_inputs, batch_img_metas, rescale): """Inference with slide/whole style. Args: batch_inputs (Tensor): The input image of shape (N, 3, H, W). batch_img_metas (dict): Image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. rescale (bool): Whether rescale back to original shape. Returns: Tensor: The output segmentation map. """ assert self.test_cfg.mode in ['slide', 'whole'] ori_shape = batch_img_metas[0]['ori_shape'] assert all(_['ori_shape'] == ori_shape for _ in batch_img_metas) if self.test_cfg.mode == 'slide': seg_logit = self.slide_inference(batch_inputs, batch_img_metas, rescale) else: seg_logit = self.whole_inference(batch_inputs, batch_img_metas, rescale) output = F.softmax(seg_logit, dim=1) flip = batch_img_metas[0].get('flip', None) if flip: flip_direction = batch_img_metas[0]['flip_direction'] assert flip_direction in ['horizontal', 'vertical'] if flip_direction == 'horizontal': output = output.flip(dims=(3, )) elif flip_direction == 'vertical': output = output.flip(dims=(2, )) return output def simple_test(self, batch_inputs, batch_img_metas, rescale=True): """Simple test with single image.""" results_dict = dict() seg_logit = self.inference(batch_inputs, batch_img_metas, rescale) results_dict['seg_logits'] = seg_logit seg_pred = seg_logit.argmax(dim=1) seg_pred = seg_pred.cpu().numpy() results_dict['pred_sem_seg'] = seg_pred results_list = self.postprocess_result(results_dict) return results_list def aug_test(self, batch_inputs, batch_img_metas, rescale=True): """Test with augmentations. Only rescale=True is supported. """ # aug_test rescale all imgs back to ori_shape for now assert rescale # to save memory, we get augmented seg logit inplace seg_logit = self.inference(batch_inputs[0], batch_img_metas[0], rescale) for i in range(1, len(batch_inputs)): cur_seg_logit = self.inference(batch_inputs[i], batch_img_metas[i], rescale) seg_logit += cur_seg_logit seg_logit /= len(batch_inputs) seg_pred = seg_logit.argmax(dim=1) # unravel batch dim seg_pred = list(seg_pred) return seg_pred