Collections: - Name: CCNet Metadata: Training Data: - Cityscapes - Pascal VOC 2012 + Aug - ADE20K Models: - Name: ccnet_r50-d8_512x1024_40k_cityscapes In Collection: CCNet Metadata: inference time (ms/im): - value: 301.2 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.76 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes/ccnet_r50-d8_512x1024_40k_cityscapes_20200616_142517-4123f401.pth Config: configs/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes.py - Name: ccnet_r101-d8_512x1024_40k_cityscapes In Collection: CCNet Metadata: inference time (ms/im): - value: 432.9 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.35 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes/ccnet_r101-d8_512x1024_40k_cityscapes_20200616_142540-a3b84ba6.pth Config: configs/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes.py - Name: ccnet_r50-d8_769x769_40k_cityscapes In Collection: CCNet Metadata: inference time (ms/im): - value: 699.3 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.46 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_40k_cityscapes/ccnet_r50-d8_769x769_40k_cityscapes_20200616_145125-76d11884.pth Config: configs/ccnet/ccnet_r50-d8_769x769_40k_cityscapes.py - Name: ccnet_r101-d8_769x769_40k_cityscapes In Collection: CCNet Metadata: inference time (ms/im): - value: 990.1 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.94 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_40k_cityscapes/ccnet_r101-d8_769x769_40k_cityscapes_20200617_101428-4f57c8d0.pth Config: configs/ccnet/ccnet_r101-d8_769x769_40k_cityscapes.py - Name: ccnet_r50-d8_512x1024_80k_cityscapes In Collection: CCNet Metadata: inference time (ms/im): - value: 301.2 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.03 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes/ccnet_r50-d8_512x1024_80k_cityscapes_20200617_010421-869a3423.pth Config: configs/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes.py - Name: ccnet_r101-d8_512x1024_80k_cityscapes In Collection: CCNet Metadata: inference time (ms/im): - value: 432.9 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.87 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes/ccnet_r101-d8_512x1024_80k_cityscapes_20200617_203935-ffae8917.pth Config: configs/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes.py - Name: ccnet_r50-d8_769x769_80k_cityscapes In Collection: CCNet Metadata: inference time (ms/im): - value: 699.3 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.29 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_80k_cityscapes/ccnet_r50-d8_769x769_80k_cityscapes_20200617_010421-73eed8ca.pth Config: configs/ccnet/ccnet_r50-d8_769x769_80k_cityscapes.py - Name: ccnet_r101-d8_769x769_80k_cityscapes In Collection: CCNet Metadata: inference time (ms/im): - value: 990.1 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.45 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_80k_cityscapes/ccnet_r101-d8_769x769_80k_cityscapes_20200618_011502-ad3cd481.pth Config: configs/ccnet/ccnet_r101-d8_769x769_80k_cityscapes.py - Name: ccnet_r50-d8_512x512_80k_ade20k In Collection: CCNet Metadata: inference time (ms/im): - value: 47.87 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.78 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_80k_ade20k/ccnet_r50-d8_512x512_80k_ade20k_20200615_014848-aa37f61e.pth Config: configs/ccnet/ccnet_r50-d8_512x512_80k_ade20k.py - Name: ccnet_r101-d8_512x512_80k_ade20k In Collection: CCNet Metadata: inference time (ms/im): - value: 70.87 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.97 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_80k_ade20k/ccnet_r101-d8_512x512_80k_ade20k_20200615_014848-1f4929a3.pth Config: configs/ccnet/ccnet_r101-d8_512x512_80k_ade20k.py - Name: ccnet_r50-d8_512x512_160k_ade20k In Collection: CCNet Metadata: inference time (ms/im): - value: 47.87 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.08 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_160k_ade20k/ccnet_r50-d8_512x512_160k_ade20k_20200616_084435-7c97193b.pth Config: configs/ccnet/ccnet_r50-d8_512x512_160k_ade20k.py - Name: ccnet_r101-d8_512x512_160k_ade20k In Collection: CCNet Metadata: inference time (ms/im): - value: 70.87 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.71 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_160k_ade20k/ccnet_r101-d8_512x512_160k_ade20k_20200616_000644-e849e007.pth Config: configs/ccnet/ccnet_r101-d8_512x512_160k_ade20k.py - Name: ccnet_r50-d8_512x512_20k_voc12aug In Collection: CCNet Metadata: inference time (ms/im): - value: 48.9 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.17 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_20k_voc12aug/ccnet_r50-d8_512x512_20k_voc12aug_20200617_193212-fad81784.pth Config: configs/ccnet/ccnet_r50-d8_512x512_20k_voc12aug.py - Name: ccnet_r101-d8_512x512_20k_voc12aug In Collection: CCNet Metadata: inference time (ms/im): - value: 73.31 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.27 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_20k_voc12aug/ccnet_r101-d8_512x512_20k_voc12aug_20200617_193212-0007b61d.pth Config: configs/ccnet/ccnet_r101-d8_512x512_20k_voc12aug.py - Name: ccnet_r50-d8_512x512_40k_voc12aug In Collection: CCNet Metadata: inference time (ms/im): - value: 48.9 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 75.96 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_40k_voc12aug/ccnet_r50-d8_512x512_40k_voc12aug_20200613_232127-c2a15f02.pth Config: configs/ccnet/ccnet_r50-d8_512x512_40k_voc12aug.py - Name: ccnet_r101-d8_512x512_40k_voc12aug In Collection: CCNet Metadata: inference time (ms/im): - value: 73.31 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.87 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_40k_voc12aug/ccnet_r101-d8_512x512_40k_voc12aug_20200613_232127-c30da577.pth Config: configs/ccnet/ccnet_r101-d8_512x512_40k_voc12aug.py