import pytest import torch from mmseg.models.backbones import SwinTransformer def test_swin_transformer(): """Test Swin Transformer backbone.""" with pytest.raises(AssertionError): # We only support 'official' or 'mmcls' for this arg. model = SwinTransformer(pretrain_style='swin') with pytest.raises(TypeError): # Pretrained arg must be str or None. model = SwinTransformer(pretrained=123) with pytest.raises(AssertionError): # Because swin use non-overlapping patch embed, so the stride of patch # embed must be equal to patch size. model = SwinTransformer(strides=(2, 2, 2, 2), patch_size=4) # Test absolute position embedding temp = torch.randn((1, 3, 224, 224)) model = SwinTransformer(pretrain_img_size=224, use_abs_pos_embed=True) model.init_weights() model(temp) # Test patch norm model = SwinTransformer(patch_norm=False) model(temp) # Test pretrain img size model = SwinTransformer(pretrain_img_size=(224, )) with pytest.raises(AssertionError): model = SwinTransformer(pretrain_img_size=(224, 224, 224)) # Test normal inference temp = torch.randn((1, 3, 512, 512)) model = SwinTransformer() outs = model(temp) assert outs[0].shape == (1, 96, 128, 128) assert outs[1].shape == (1, 192, 64, 64) assert outs[2].shape == (1, 384, 32, 32) assert outs[3].shape == (1, 768, 16, 16) # Test abnormal inference temp = torch.randn((1, 3, 511, 511)) model = SwinTransformer() outs = model(temp) assert outs[0].shape == (1, 96, 128, 128) assert outs[1].shape == (1, 192, 64, 64) assert outs[2].shape == (1, 384, 32, 32) assert outs[3].shape == (1, 768, 16, 16) # Test abnormal inference temp = torch.randn((1, 3, 112, 137)) model = SwinTransformer() outs = model(temp) assert outs[0].shape == (1, 96, 28, 35) assert outs[1].shape == (1, 192, 14, 18) assert outs[2].shape == (1, 384, 7, 9) assert outs[3].shape == (1, 768, 4, 5)