Collections: - Metadata: Training Data: - Cityscapes - ADE20K Name: sem_fpn Models: - Config: configs/sem_fpn/fpn_r50_512x1024_80k_cityscapes.py In Collection: sem_fpn Metadata: backbone: R-50 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 73.86 lr schd: 80000 memory (GB): 2.8 Name: fpn_r50_512x1024_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 74.52 mIoU(ms+flip): 76.08 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes_20200717_021437-94018a0d.pth - Config: configs/sem_fpn/fpn_r101_512x1024_80k_cityscapes.py In Collection: sem_fpn Metadata: backbone: R-101 crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 97.18 lr schd: 80000 memory (GB): 3.9 Name: fpn_r101_512x1024_80k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 75.8 mIoU(ms+flip): 77.4 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes_20200717_012416-c5800d4c.pth - Config: configs/sem_fpn/fpn_r50_512x512_160k_ade20k.py In Collection: sem_fpn Metadata: backbone: R-50 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 17.93 lr schd: 160000 memory (GB): 4.9 Name: fpn_r50_512x512_160k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 37.49 mIoU(ms+flip): 39.09 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k_20200718_131734-5b5a6ab9.pth - Config: configs/sem_fpn/fpn_r101_512x512_160k_ade20k.py In Collection: sem_fpn Metadata: backbone: R-101 crop size: (512,512) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,512) value: 24.64 lr schd: 160000 memory (GB): 5.9 Name: fpn_r101_512x512_160k_ade20k Results: Dataset: ADE20K Metrics: mIoU: 39.35 mIoU(ms+flip): 40.72 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k_20200718_131734-306b5004.pth