# Copyright (c) OpenMMLab. All rights reserved. from mmseg.registry import DATASETS from .custom import BaseSegDataset @DATASETS.register_module() class iSAIDDataset(BaseSegDataset): """ iSAID: A Large-scale Dataset for Instance Segmentation in Aerial Images In segmentation map annotation for iSAID dataset, which is included in 16 categories. ``reduce_zero_label`` is fixed to False. The ``img_suffix`` is fixed to '.png' and ``seg_map_suffix`` is fixed to '_manual1.png'. """ METAINFO = dict( classes=('background', 'ship', 'store_tank', 'baseball_diamond', 'tennis_court', 'basketball_court', 'Ground_Track_Field', 'Bridge', 'Large_Vehicle', 'Small_Vehicle', 'Helicopter', 'Swimming_pool', 'Roundabout', 'Soccer_ball_field', 'plane', 'Harbor'), palette=[[0, 0, 0], [0, 0, 63], [0, 63, 63], [0, 63, 0], [0, 63, 127], [0, 63, 191], [0, 63, 255], [0, 127, 63], [0, 127, 127], [0, 0, 127], [0, 0, 191], [0, 0, 255], [0, 191, 127], [0, 127, 191], [0, 127, 255], [0, 100, 155]]) def __init__(self, **kwargs) -> None: super().__init__( img_suffix='.png', seg_map_suffix='_instance_color_RGB.png', ignore_index=255, **kwargs) assert self.file_client.exists(self.data_prefix['img_path'])